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Abstract

To generate natural language feedback for an
intelligent tutoring system, we developed a
simple planning model with a distinguishing
feature: its plan operators are derived auto-
matically, on the basis of the association rules
mined from our tutorial dialog corpus. Auto-
matically mined rules are also used for real-
ization. We evaluated 5 different versions of
a system that tutors on an abstract sequence
learning task. The version that uses our plan-
ning framework is significantly more effective
than the other four versions. We compared this
version to the human tutors we employed in
our tutorial dialogs, with intriguing results.

1 Introduction

Intelligent Tutoring Systems (ITSs) are software
systems that provide individualized instruction, like
human tutors do in one-on-one tutoring sessions.
Whereas ITSs have been shown to be effective in
engendering learning gains, they still are not equiv-
alent to human tutors. Hence, many researchers
are exploring Natural Language (NL) as the key to
bridging the gap between human tutors and current
ITSs. A few results are now available, that show that
ITS with relatively sophisticated language interfaces
are more effective than some other competitive con-
dition (Graesser et al., 2004; Litman et al., 2006;
Evens and Michael, 2006; Kumar et al., 2006; Van-
Lehn et al., 2007; Di Eugenio et al., 2008). Ascer-
taining which specific features of the NL interaction
are responsible for learning still remains an open re-
search question.

In our experiments, we contrasted the richness
with which human tutors respond to student ac-
tions with poorer forms of providing feedback, e.g.

only graphical. Our study starts exploring the role
that positive feedback plays in tutoring and in ITSs.
While it has long been observed that most tutors tend
to avoid direct negative feedback, e.g. (Fox, 1993;
Moore et al., 2004), ITSs mostly provide negative
feedback, as they react to student errors.

In this paper, we will first briefly describe our tu-
torial dialog collection. We will then present the
planning architecture that underlies our feedback
generator. Even if our ITS does not currently al-
low for student input, our generation architecture is
inspired by state-of-the art tutorial dialog manage-
ment (Freedman, 2000; Jordan et al., 2001; Zinn et
al., 2002). One limitation of these approaches is that
plan operators are difficult to maintain and extend,
partly because they are manually defined and tuned.
Crucially, our plan operators are automatically de-
rived via the association rules mined from our cor-
pus. Finally, we will devote a substantial amount
of space to evaluation. Our work is among the first
to show not only that a more sophisticated language
interface results in more learning, but that it favor-
ably compares with human tutors. Full details on
our work can be found in (Lu, 2007).

2 Task and curriculum

Our domain concerns extrapolating letter patterns,
such as inferring EFMGHM, given the pattern
ABMCDM and the new initial letter E. This task is
used in cognitive science to investigate human in-
formation processing (Kotovsky and Simon, 1973;
Reed and Johnson, 1994; Nokes and Ohlsson, 2005).
The curriculum we designed consists of 13 patterns
of increasing length and difficulty; it was used un-
changed in both our human data collection and ITS
experiments. The curriculum is followed by two



Tutor Moves
Answer student’s questions
Evaluate student’s actions
Summarize what done so far
Prompt student into activity
Diagnose what student is doing
Instruct
Demonstrate how to solve (portions of) problem
Support – Encourage student
Conversation – Acknowledgments, small talk

Student Moves
Question
Explain what student said or did
Reflect – Evaluate own understanding
Answer tutor’s question
Action Response – Perform non-linguistic action

(e.g. write letter down)
Complete tutor’s utterance
Conversation – Acknowledgments, small talk

Table 1: Tutor and student moves

post-test problems, each 15 letter long: subjects (all
from the psychology subject pool) have n trials to
extrapolate each pattern, always starting from a dif-
ferent letter (n = 6 in the human conditions, and
n = 10 in the ITS conditions). While the ear-
lier example was kept simple for illustrative pur-
poses, our patterns become very complex. Start-
ing e.g. from the letter L, we invite the reader to
extrapolate problem 9 in our curriculum: BDDFF-
FCCEEGGGC, or the second test problem: ACZD-
BYYDFXGEWWGI.1

3 Human dialogs

Three tutors – one expert, one novice, and one
(the lecturer) experienced in teaching, but not in
one-on-one tutoring – were videotaped as they in-
teracted with 11 subjects each.2 A repeated mea-
sures ANOVA, followed by post-hoc tests, revealed
that students with the expert tutor performed signifi-
cantly better than the students with the other two tu-
tors on both test problems (p < 0.05 in both cases).

36 dialog excerpts were transcribed, taken from

1The solutions are, respectively: LNNPPPMMOOQQQM,
and LNZOMYYOQXRPWWRT .

2One goal of ours was to ascertain whether expert tutors are
indeed more effective than non-expert tutors, not at all a fore-
gone conclusion since very few studies have contrasted expert
and non expert tutors, e.g. (Glass et al., 1999).

18 different subjects (6 per tutor), for a total of
about 2600 tutor utterances and 660 student ut-
terances (transcription guidelines were taken from
(MacWhinney, 2000)). For each subject, these two
dialog excerpts cover the whole interaction with the
tutor on one easy and one difficult problem (# 2 and
9 respectively). 2 groups of 2 coders each, annotated
half of the transcripts each, with dialogue moves.
Our move inventory comprises 9 tutor moves and
7 student moves, as listed in Table 1.3 Table 2
presents an annotated fragment from one of the di-
alogues with the expert tutor. Kappa measures for
intercoder agreement had values in the following
ranges, according to the scale in (Rietveld and van
Hout, 1993): for tutor moves, from moderate (0.4
for Support) to excellent (0.82 for Prompt); for stu-
dent moves, from substantial (0.64 for Explanation)
to excellent (0.82 for Question, 0.97 for ActionRe-
sponse). Whereas some of these Kappa measures
are lower than what we had strived for, we decided
to nonetheless use the move inventory in its entirety,
after the coders reconciled their codings. In fact, our
ultimate evaluation measure concerns learning, and
indeed the ITS version that uses that entire move in-
ventory engenders the most learning. Please see (Lu
et al., 2007) for a detailed analysis of these dialogs
and for a discussion of differences among the tutors
in terms of tutor and student moves.

The transcripts were further annotated by one
coder for tutor attitude (whether the tutor agrees
with the student’s response – positive, negative, neu-
tral), for correctness of student move and for stu-
dent confidence (positive, negative, neutral). Stu-
dent hesitation time (long, medium, short) was es-
timated by the transcribers. Additionally, we an-
notated for the problem features under discussion.
Of the 8 possible relationships between letters, most
relevant to the examples discussed in this paper are
forward, backward, progression and marker. E.g. in
ABMCDM, M functions as chunk marker, and the
sequence moves forward by one step, both within
one chunk and across chunks. Within and across are
two out of 4 relationship scopes, which encode the
coverage of a particular relationship within the se-
quence.

3There is no explicit tutor question move because we focus
on the goal of a tutor’s question, either prompt or diagnose.



Line Utterances Annotation
38 Tutor: how’d you actually get the n in the first place? Diagnose
39 Student: from here I count from c to g and then just from n to r. Answer
40 Tutor: okay so do the c to g. Prompt
41 Tutor: do it out loud so I can hear you do it. Prompt
42 Student: c d e f. Explain
43 Student: so it’s three spaces. Answer
44 Tutor: okay so it’s three spaces in between. Summarize

Table 2: An annotated fragment from a dialogue with the expert tutor

4 Learning rules to provide feedback

Once the corpus was annotated, we mined the ex-
pert tutor portion via Classification based on Associ-
ations (CBA) (Liu et al., 1998). CBA generates un-
derstandable rules and has been effectively applied
to various domains. CBA finds all rules that exist
in the data, which is especially important for small
training sets such as ours.

To modularize what the rules should learn, we de-
composed what the tutor should do into two com-
ponents pertaining to content: letter relationship and
relationship scope; and two components pertaining
to how to deliver that content: tutor move and tutor
attitude. Hence, we derived 4 sets of tutorial rules.
Features used in the rules are those annotated on the
tutoring dialogs, plus the student’s Knowledge State
(KS) on each type of letter relationship rel, com-
puted as follows:

KS(rel) = bp× 0.5 + w

t
× 5c (1)

p is the number of partially correct student inputs, w
is the number of wrong student inputs and t is the to-
tal number of student inputs (“inputs” here are only
those relevant to the relationship rel, as logged by
the ITS from the beginning of the session). KS(rel)
ranges from 0 to 5. The higher the value, the worse
the performance on rel. The scale of 5 was chosen
to result in just enough values for KS(rel) to be use-
ful for classification.

We ran experiments with different lengths of dia-
log history, but using only the last utterance gave us
the best results. Three of the four rule sets have ac-
curacies between 88 and 90% (results are based on
6-way cross-validation, and the cardinality of each
set of rules is in the low hundreds. ). Whereas the
tutor move rule set only has 57% accuracy, as for
some of the low Kappa values mentioned earlier, our

relation-marker = No, relation-forward = Yes,
student-move = ActionResponse
→ relation-forward = Yes
(Confidence = 100%, Support = 4.396%)
correctness = wrong, scope-within = No,
KS(backward) = 0, relation-forward = Yes
→ tutor-move = Summarize
(Confidence = 100%, Support = 6.983%)

correctness = wrong, relation-forward = Yes,
KS(forward) = 1, hesitation = no
→ tutor-attitude = negative
(Confidence = 100%, Support = 1.130%)

Figure 1: Example Tutorial Rules

ultimate evaluation measure is that the NL feedback
based on these rules does improve learning.

Figure 1 shows three example rules, for choosing
relationship, move and attitude respectively – we’ll
discuss two of them. The first rule predicts that the
ITS will continue focusing on the forward relation,
if it was focusing on forward and not on marker, and
the student just input something. The second rule
chooses the summarize move if the student made a
mistake, the ITS was focusing on forward but not on
relationships within chunks, and the student showed
perfect knowledge of backward.

Two strength measurements are associated with
each rule X → y. A rule holds with confidence
conf if conf% of cases that contain X also contain y;
and with support sup if sup% of cases contain X or
y. Rules are ordered, with confidence having prece-
dence over support. Ties over confidence are solved
via support; any remaining ties are solved according
to the order rules were generated.



For each Tut-Move-Rule TMRi,k whose Left-Hand Side LHS matches ISi do:

1. Create and Populate New Plan pi,k:

(a) preconditions = ISi; actions = tutor move from TMRi,k; strength = confidence and support from TMRi,k

(b) Fill remaining slots in pi,k:
i. contents = relationship ∪ scope (from highest ranked rules that match ISi from relationship and scope

rule sets);
ii. modifiers = attitude (from highest ranked rule that matches ISi from tutor attitude rule set)

2. Augment Plan: do the following n times :

(a) make copy of ISi and name it ISi+1;
(b) change agent to “tutor”;
(c) change corresponding elements in ISi+1 to move, attitude, letter relationship and scope from pi,k;
(d) from the two rule sets for tutor move and tutor attitude, retrieve highest ranked rules that match ISi+1,

TMRi+1,j and TARi+1,j

(e) add to actions tutor move from TMRi+1,j ; add to modifiers tutor attitude from TARi+1,j

Figure 2: Plan generation

5 From rules to plans

For our task of extrapolating abstract sequences, we
built a model-tracing ITS by means of the Tutoring
Development Kit (TDK) (Koedinger et al., 2003).
Model-tracing ITSs codify cognitive skills via pro-
duction rules. The student’s solution is monitored
by rules that fire according to the underlying model.
When the student steps differ from that model, an
error is recognized. A portion of the student inter-
face of the ITS is shown in Figure 4a. It mainly in-
cludes two rows, one showing the Example Pattern,
the other for the student to input the New Pattern
extrapolated starting with the letter in the first cell.

In model-tracing ITSs, production rules provide
the capability to generate simple template-based
messages. We developed a more sophisticated NL
feedback generator consisting of three major mod-
ules: update, planning and feedback realization.

The update module maintains the context, rep-
resented by the Information State (IS) (Larsson
and Traum, 2000), which captures the overall dia-
log context and interfaces with external knowledge
sources (e.g., curriculum, tutorial rules) and the pro-
duction rule system. As the student performs a new
action, the IS is updated. The planning module gen-
erates or revises the system plan and selects the next
tutoring move based on the newly updated IS. At
last the feedback realization module transforms this
move into NL feedback.

The planning module consists of three compo-
nents, plan generation, plan selection and plan mon-
itoring. A plan includes an ordered collection of tu-
toring moves meant to help the student correctly fill
a single cell. The structure of our plans is shown in
Figure 3.

Plan generation generates a plan set which con-
tains one plan for each tutor move rule that matches
the current ISi. Each of these plans is augmented at
plan generation time by ‘simulating’ the next ISi+1

that would result if the move is executed but its ef-
fects are not achieved. The algorithm is sketched
in Figure 2. The planner iterates through the tutor
move rule set.4 Recall that our four rule sets are to-
tally ordered. Also, note that each rule set contains a
default rule that fires when no rule matches the cur-
rent ISi. In Step 1b, at every iteration only the rules
that have not been checked yet from those three rule
sets are considered. In Step 2, n is set to 3, i.e., each
plan contains 3 additional moves and corresponding
attitudes, which will provide hints when no response
from the student occurs. Three hints plus one orig-
inal move makes 4, which is the average number of
moves in one turn of the expert tutor.

An example plan is shown in Figure 3. It is gen-
erated in reaction to the mistake in Figure 4a, and by

4Since there is no language input, rules which include stu-
dent moves other than ActionResponse in their LHS will never
be activated. Additionally, we recast tutor answers as confirm
moves, since students cannot ask questions.



Preconditions (same as the IS in Figure 4b)
Effects student’s input = W
Contents relationship = forward

scope = across
Actions summarize, evaluate, prompt,

summarize
Modifiers negative, negative, neutral, neutral
Strength conf = 100%, sup = 6.983%

Figure 3: An Example Plan

firing, among others, the rules in Figure 1. The IS in
Figure 4b reflects some of the history of this interac-
tion (in the slots Relationships, Scopes and KS), and
as such corresponds to the situation depicted in Fig-
ure 4a in a specific context (this plan was generated
in one of our user experiments).

The plan selection component retrieves the high-
est ranked plan in the newly generated plan set, se-
lects a template for each tutoring move in its “Ac-
tions” slot and puts each tutoring move onto the di-
alog move (DM) stack. Earlier we mentioned that
rules are totally ordered according to confidence,
then support and finally rule generation order. When
a plan set contains more than one plan, plans are
also totally ordered, since they inherit strength mea-
surements from the rule that engenders the first tutor
move in the Actions slot.

After the student receives the message which
realizes the top tutoring move in the DM stack,
plan monitoring checks whether its intended effects
have been obtained. If the effects have not been ob-
tained, and the student’s input is unchanged, the next
move from the DM stack will be executed to pro-
vide the student with hint messages until either the
student’s input changes or the DM stack becomes
empty. If the DM stack becomes empty, the next
plan is selected from the original plan set and the
tutoring moves within that plan are pushed onto the
DM stack. Whenever the student’s input changes,
or after every plan in the plan set has been selected,
control returns to plan generation.

The realization module. A tutor move is pushed
onto the DM stack by plan selection together with
a template to realize it. 50 templates were writ-
ten manually upon inspection of the expert tutor di-
alogs. Since several templates can realize each tutor
move, we used CBA to learn rules to choose among
templates. Features used to learn when to use each

(a) A Student Action in Problem 4

1. Agent: student (producer of current move);

2. Relationships: forward, progress in length

3. Scopes: across (for ‘forward’), within (for
‘progress in length’);

4. Agent’s move: action response;

5. Agent’s attitude: positive (since student shows
no hesitation before inputting letter);

6. Correctness: wrong (correct letter is W);

7. Student’s input: X;

8. Student’s selection: 4th cell in New Pattern row;

9. Hesitation time: no;

10. Student’s knowledge state (KS): 1 (on “for-
ward”), 3 (on “progress in length”).

(b) The corresponding IS

Figure 4: A snapshot of an ITS interaction

template also include the tutor attitude. For the first
Summarize move in the plan in Figure 3, given the
IS in Figure 4b, the rule in Fig. 5 will fire (tutor at-
titude does not affect this specific rule). As a result,
the following feedback message is generated: “From
V to X, you are going forward 2 in the alphabet.”

6 Evaluation

To demonstrate the utility of our feedback genera-
tor, we developed five different versions of our ITS,
named according to how feedback is generated:

1. No feedback: The ITS only provides the basic
interface, so that subjects can practice solving
the 13 problems in the curriculum, but does not
provide any kind of feedback.

2. Color only: The ITS provides graphic feed-
back by turning the input green if it is correct
or red if it is wrong.

3. Negative: In addition to the color feedback, the



scope-within = No, relation-marker = No,
relation-forward = Yes, move= Summarize →
template = TPL11
[where TPL11: From ”<reference-pattern>”
to ”<input>”, you are going <input-relation>
<input-number> in the alphabet.]

Figure 5: Example Realization Rule

ITS provides feedback messages when the in-
put is wrong.

4. Positive: In addition to the color feedback, the
ITS provides feedback messages when the in-
put is correct.

5. Model: In addition to the color feedback, the
ITS provides feedback messages generated by
the feedback generator just described.

Feedback is given for each input letter. Positive
and negative verbal feedback messages are given
out whenever the student’s input is correct or incor-
rect, respectively. Positive feedback messages con-
firm the correct input and explain the relationships
which this input is involved in. Negative feedback
messages flag the incorrect input and deliver hints.
The feedback messages for the “negative” and “pos-
itive” versions were developed earlier in the project,
to avoid repetitions and inspired by the expert tu-
tor’s language but before we performed any anno-
tation and mining. They are directly generated by
TDK production rules.

Although in reality positive and negative feedback
are both present in tutoring sessions, one study for
the letter pattern task shows that positive/negative
feedback, given independently, perform different
functions (Corrigan-Halpern and Ohlsson, 2002). In
addition, our negative condition is meant to embody
the “classical” model-tracing ITS, that only reacts
to student errors. Hence, in our experiments, we
elected to keep these two types of feedback separate,
other than in the “model” version of the ITS.

To evaluate the five versions of the ITS, we ran a
between-subjects study in which each group of sub-
jects interacted with one version of the system. A
group of control subjects took the post-test with no
training at all but only read a short description of the

Score
Condition Prob 1 Prob 2 Total

0 Control 36.50 32.84 69.34
1 No feedback 58.21 75.27 133.48
2 Color only 68.32 66.30 134.62
3 Negative 70.33 66.06 141.83
4 Positive 75.06 79.00 154.06
5 Model 91.95 101.76 193.71

Table 3: Average Post-test Scores of the ITS

domain.5 Subjects were trained to solve the same
13 problems in the curriculum that were used in the
human tutoring condition. They also did the same
post-test (2 problems, each pattern 15 letters long).
For each post-test problem, each subject had 10 tri-
als, where each trial started with a new letter.

6.1 Results

Table 3 reports the average post-test scores of the
six groups of subjects, corresponding to the five ver-
sions of the ITS and the control condition. Perfor-
mance on each problem is measured by the number
of correct letters out of a total of 150 letters (15 let-
ters by 10 trials); hence, cumulative post-test score,
is the number of correct letters out of 300 possible.

A note before we proceed. In ITS research it is
common to administer the same test before (pre-test)
and after treatment (post-test), but we only have the
post-test. The pre/post-test paradigm is used for two
reasons. First, for evaluation proper, to gauge learn-
ing gains. Second, to verify that the groups have the
same level of pre-tutoring ability, as shown when the
pre-tests of the different groups are statistically in-
distinguishable, and hence, that they can be rightly
compared. Even without a pre-test we can assess
this. An ANOVA on “time spent on the first 3 prob-
lems” revealed no significant differences across the
different groups. Since time spent on the first 3 prob-
lems is highly correlated with post-test score (multi-
ple regression, p < 0.03), this provides indirect evi-
dence that all subjects before treatment have equiva-
lent ability for this task. Hence, we can trust that our
evaluation, in terms of absolute scores, does reveal
differences between conditions.

Our main findings are based on one-way
ANOVAs, followed by Tukey post-hoc tests:

5The number of subjects in each condition varies from 32 to
38. Groups differ in size because of technical problems.



• A main effect of ITS (p ≤ 0.05). Subjects who
interacted with any version of the ITS had sig-
nificantly higher total post-test scores than sub-
jects in the control condition.

• A main effect of modeled feedback (p < 0.05).
Subjects who interacted with the “model” ver-
sion of the ITS had significantly higher total
post-test scores than control subjects, and sub-
jects with any other version of the ITS.

• No other effects. Subjects trained by the three
versions “color only”, “negative”, “positive”,
did not have significantly higher total post-test
scores than subjects with the “no feedback”
version; neither did subjects trained by the two
versions “negative”, “positive”, wrt subjects
with the “color-only” version.

If we examine individual problems, the same pat-
tern of results hold, other than, interestingly, the
model and positive versions are not significantly dif-
ferent any more. As customary, we also analyze ef-
fect sizes , i.e., how much more subjects learn with
the ‘model’ ITS in comparison to the other condi-
tions. On the Y axis, Figure 6 shows Cohen’s d, a
common measure of effect size. Each point repre-
sents the difference between the means of the scores
in the ’model’ ITS and in one of the other condi-
tion, divided by the standard deviation of either con-
dition. According to (Cohen, 1988), the effect sizes
shown in Figure 6 are large as concerns the compari-
son with the “no feedback”, “color only” and “nega-
tive” conditions, and moderate as concerns the “pos-
itive” condition.6

ITSs and Human Tutors. After we established
that, at least cumulatively, the “model” ITS is more
effective than the other ITSs, we wanted to assess
how well the “model” ITS fares in comparison to
the expert tutor it is modeled on. Since in the human
data each post-test problem consists of only 6 trials,
the first 6 trials per problem from the ITSs are used
to run this comparison, for a maximum total score
of 180 (15 letters by 6 trials, by 2 problems). Fig-
ure 7 shows the overall post-test performance of all
9 conditions. The error bars in the figure represent
the standard deviations.

6A very large effect size with respect to control is not shown
in Figure 6.

Figure 6: Effect sizes: how much more subjects
learn with the “model” ITS

Figure 7: Post-test performance – all conditions

Paired t-tests between the model ITS and each of
the human tutors show that:7

• on problem 1, the ‘model’ ITS is indistinguish-
able from the expert tutor, and is significantly
better than the novice and the lecturer
(p = 0.05 and p = 0.039 respectively);

• on problem 2, the model ITS is significantly
worse than the expert tutor (p = 0.020), and
is not different from the other two tutors;

• cumulatively, there are no significant differ-
ences between the ‘model’ ITS and any of the
three human tutors.

7A 9-way ANOVA among all conditions is not appropriate,
since in a sense we have two “super conditions”, human and
ITS. It is better to compare the ‘model’ ITS to each of the human
tutors via t-tests, as a follow-up to the differences highlighted by
the separate analyses on the two “super conditions”.



7 Discussion and Conclusions

Our results add to the growing body of evidence
that language feedback engenders more learning not
only than simple practice, but also, than less sophis-
ticated language feedback. Importantly, our ‘model’
ITS appears intriguingly close to our expert tutor in
effectiveness: on post-test problem 1, it is as effec-
tive as the expert tutor himself, and significantly bet-
ter than the other two tutors, as the expert tutor is. It
appears our ‘model’ ITS does capture at least some
features of successful tutoring.

As concerns the specific language the ITS gen-
erates, we compared different ways of providing
verbal feedback. A subject receives both positive
and negative verbal feedback when interacting with
the “model” version, while a subject receives only
one type of verbal feedback when interacting with
the “positive” and “negative” versions (recall that
in all these versions including the “model” ITS the
red/green graphical feedback is provided on every
input). While we cannot draw definite conclusions
regarding the functions of positive and negative
feedback, since the ‘model’ version provides other
tutorial moves beyond positive / negative feedback,
we have suggestive evidence that negative feedback
by itself is not as effective. Additionally, positive
feedback appears to play an important role. First,
the ‘model’ and the ‘positive’ versions are statisti-
cally equivalent when we analyze performance on
individual problems. Further, in the “model” ver-
sion, the ratio of positive to negative messages turns
out to be 9 to 1. In our tutoring dialogs, positive
feedback still outnumbers negative feedback, but by
a lower margin, 4 to 1. We hypothesize that convey-
ing a positive attitude in an ITS is perhaps even more
important than in human tutoring since a human has
many more ways of conveying subtle shades of ap-
proval and disapproval.

From the NLG point of view, we have presented
a simple generation architecture that turns out to be
rather effective. Among its clear limitations are the
lack of hierarchical planning, and the fact that dif-
ferent components of a plan are generated indepen-
dently one from the other. Among its strengths are
that the plan operators are derived automatically via
the rules we mined, both for content planning and,
partly, for realization.

It clearly remains to be seen whether our NLG

framework can easily be ported to other domains
– the issue is not domain dependence, but whether
a more complex domain will require some form of
hierarchical planning. We are now working in the
domain of Computer Science data structures and al-
gorithms, where we continue exploring the role of
positive feedback. We collected data with two tu-
tors in that domain, and there again, we found that
in the human data positive feedback occurs about 8
times more often than negative feedback. We are
now annotating the data to mine it as we did here,
and developing the core ITS.
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Lehn. 2001. Tools for authoring tutorial dialogue
knowledge. In Proceedings of AI in Education 2001
Conference.

Kenneth R. Koedinger, Vincent Aleven, and Neil T. Hef-
fernan. 2003. Toward a rapid development environ-
ment for cognitive tutors. In 12th Annual Conference
on Behavior Representation in Modeling and Simula-
tion.

K. Kotovsky and H. Simon. 1973. Empirical tests of a
theory of human acquisition of information-processing
analysis. British Journal of Psychology, 61:243–257.

Rohit Kumar, Carolyn P. Rosé, Vincent Aleven, Ana Igle-
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