
Development and Evaluation of NL interfaces in a Small Shop�

Barbara Di Eugenio
Computer Science

University of Illinois
Chicago, IL, 60607, USA

bdieugen@cs.uic.edu

Susan Haller
Computer Science

University of Wisconsin–Parkside
Kenosha, WI, 53141, USA

haller@cs.uwp.edu

Michael Glassy
Math & CS

Valparaiso University
Valparaiso, IN, 46383, USA
Michael.Glass@valpo.edu

Abstract

The standard development of a dialogue system today
involves the following steps: corpus collection and anal-
ysis, system development guided by corpus analysis,
and finally, rigorous evaluation. Often, evaluation may
involve more than one version of the system, for ex-
ample when it is desirable to show the effect of sys-
tem parameters that differ from one version to another.
In this paper, we discuss the difficulties that small re-
search groups face in pursuing the development of dia-
logue systems. The primary difficulties are the lack of
adequate resources and the excessive amount of time it
takes to see the systems through to a meaningful evalu-
ation. As a case in point, we discuss our development
and evaluation of a natural language generation compo-
nent to improve the feedback provided by an interactive
tutoring system. Our goal has been to use relatively in-
expensive text structuring techniques to make aggregate
content more fluent and comprehensible.

Introduction
Early on, developers of dialogue interfaces used to work
mainly on the basis of their own intuitions. After complet-
ing a system, it was evaluated rather informally. This could
be just checking whether or not the system corresponded
to specifications, or it could take the form of informal user
studies. The current development standard for a dialogue
system has the following steps: 1) a corpus is collected and
analyzed, 2) a system is developed according to the corpus
findings, and 3) a rigorous evaluation is conducted. Often
the evaluation may involve more than one version of the sys-
tem, if it is desirable to show the effect of system parame-
ters that differ from one version to another (Young 1997;
Carenini & Moore 2000; Di Eugenio, Glass, & Trolio 2002).

The current standard definitely transforms system devel-
opment into a rigorous scientific enterprise. The strengths

�This work is supported by grants N00014-99-1-0930 and
N00014-00-1-0640 from the Office of Naval Research. We are
grateful to CoGenTex Inc., in particular to Mike White and Benoˆıt
Lavoie, for making EXEMPLARS and RealPro available to us.

yThis work was performed while Michael Glass was a postdoc-
toral fellow at the University of Illinois - Chicago.
Copyright c
 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

and weaknesses of the evaluated system are clearly assessed;
the results are replicable, and they guide further system de-
velopment. However, from the point of view of the indi-
vidual researcher, the current standard has transformed an
already time consuming endeavor (building systems) into an
endeavor that can take three times as long. Building a sys-
tem can take one or two person-years. Collecting and ana-
lyzing a corpus may take as long, and evaluation may take at
least half as long. This is particularly problematic for small
natural language research groups - groups with one lead re-
searcher, one or two graduate students or a postdoctoral fel-
low, and possibly one or two external collaborators.

We would like to see this issue addressed at the sympo-
sium with the hope that good suggestions may arise on how
to shorten the development cycle without compromising its
rigor. We contribute some of our own suggestions for do-
ing so in this paper. But first, as a case study, we describe
our development and evaluation of a natural language gen-
eration component to improve the feedback provided by an
interactive tutoring system.

From the onset of this project, our goal has been to use
relatively inexpensive domain-independent text structuring
techniques to make aggregate content more fluent and com-
prehensible. We were interested in understanding which
features of language feedback affect student learning. To-
wards this end, we developed three different prototypes. The
first two prototypes differ in the presentation of the lan-
guage feedback they provide. Prototype 1 (DIAG-NLP1)
has been evaluated and reported on (Di Eugenio, Glass,
& Trolio 2002); prototype 2 (DIAG-NLP2) is fully imple-
mented (Haller & Di Eugenio 2002) and recently underwent
evaluation. In contrast to the first two prototypes, prototype
3 (DIAG-NLP3) presents the same content but at a higher
level of abstraction. It is almost fully implemented and will
undergo evaluation as soon as it is ready. Moreover, a full
data collection and analysis has been conducted; the findings
from the data were used to develop prototype DIAG-NLP3,
but not the other prototypes. The project started in Fall 2000
and to be completed, it will last through Summer 2003.

In the following sections, we describe the project in
greater detail: the three protot ypes, the data collection, and
the results of evaluating DIAG-NLP1. Then we return to our
discussion of the development cycle, and based on our expe-
riences with this project, we offer some suggestions on how



it might be made more efficient.

The DIAG-NLP project
DIAG (Towne 1997) is a shell to build ITSs that teach stu-
dents to troubleshoot complex systems such as home heating
and circuitry. Authors build interactive graphical models of
systems, and build lessons based on these graphical models
(see an example in Figure 1).

A DIAG application presents a student with a series of
troubleshooting problems of increasing difficulty. The stu-
dent tests indicators and tries to infer which faulty part (RU),
may cause the detected abnormal states. RU stands forre-
placeable unit, because the only course of action for the stu-
dent to fix a problem is to replace faulty components in the
graphical simulation. Figure 1 shows the furnace system,
one subsystem of the home heating system in our DIAG ap-
plication. Figure 1 includes indicators such as the gauge la-
beled Water Temperature, replaceable units, and other com-
plex modules (Oil Burner) that contain indicators and re-
placeable units. Complex components are zoomable.

At any point, the student can consult the built-in tutor via
the Consult menu (cf. the Consult button in Figure 1). For
example, if an indicator shows an abnormal reading, s/he can
ask the tutor for a hint regarding which RUs may cause the
problem. After deciding which content to communicate, the
original DIAG system (DIAG-orig) uses very simple tem-
plates to assemble text to present to the student. As a result,
the feedback provided by DIAG-orig is repetitive, both inter-
and intra-turn. In many cases, the feedback is a long list of
parts. The top part of Figure 2 shows the reply provided by
DIAG-orig to a request for information regarding the indi-
cator named “Visual Combustion Check”.

The first prototype: DIAG-NLP1
We built DIAG-NLP1 with the aim of rapidly improving
DIAG’s feedback mechanism. Our two main goals were to
assess whether simple NLG techniques would lead to mea-
surable improvements in the system’s output and to conduct
a systematic evaluation that would focus on language only.
Thus, we did not change the tutoring strategy, or alter the in-
teraction between student and system in any way. Rather, we
concentrated on improving each turn by avoiding excessive
repetitions. We chose to achieve this by: introducing syn-
tactic aggregation (Dalianis 1996; Huang & Fiedler 1996;
Shaw 1998; Reape & Mellish 1998) and what we callfunc-
tional aggregation, namely, grouping parts according to the
structure of the system; and improving the format of the out-
put.

The bottom part of Figure 2 shows the revised output pro-
duced byDIAG-NLP. The RUs under discussion are grouped
by the system modules that contain them (Oil Burner and
Furnace System), and by the likelihood that a certain RU
causes the observed symptoms. We call these groupings the
systemandcertainty dimensionsof the aggregation, and the
actual values that we aggregate units are thesystemandcer-
tainty dimension values. In contrast to the original answer,
the revised answer singles out theIgnitor Assembly, the only
RU that cannot cause the symptom.

As our sentence planner, we use EXEMPLARS (White &
Caldwell 1998), an object-oriented, rule based generator. It
mixes template-style text planning with a more sophisticated
type of text planning based on dynamic dispatch. The rules
(calledexemplars) are meant to capture an exemplary way
of achieving a communicative goal in a given communica-
tive context. The text planner selects rules by traversing the
exemplar specialization hierarchy, and evaluating the appli-
cability conditions associated with each exemplar.

After a student query, DIAG collects the content that it
needs to communicate to the student, and writes it to a
text file that is passed to EXEMPLARS. EXEMPLARS per-
forms three tasks: 1) it determines the specific exemplars
needed; 2) it adds the chosen exemplars to the sentence plan-
ner as a goal; 3) it linearizes and lexicalizes the feedback in
its final form, writing it to a file which is passed back to
DIAG for display in a text window.

In DIAG-NLP1, morphology, lexical realization and re-
ferring expression generation were all directly encoded in
the appropriate exemplars.

Evaluation of DIAG-NLP1. Our empirical evaluation of
DIAG-NLP1 is a between-subject study: one group inter-
acts with DIAG-orig and the other with DIAG-NLP1. The
34 subjects (17 per group) were all science or engineering
majors affiliated with the University of Illinois at Chicago.
Each subject read some short material about home heating,
went through the first problem as a trial run, and then contin-
ued through the curriculum on his/her own. The curriculum
consists of three problems of increasing difficulty. As there
was no time limit, every student solved every problem. At
the end of the experiment, each subject was given a ques-
tionnaire.

We collected a log for each subject that included for each
problem: whether the problem was solved; total time, and
time spent reading feedback; how many and which indi-
cators and RUs the subject consults DIAG about; and how
many and which RUs the subject replaces.

The questionnaire is divided into three parts. The first
part tests the subject’s understanding of the domain. Be-
cause these questions are open ended, it was scored like an
essay. The second part asks the subject to rate the system’s
feedback along four dimensions on a scale from 1 to 5 (see
Table 3). The third part concerns whether subjects remem-
ber their actions, specifically, the RUs they replaced. We
quantify the subjects’ recollections in terms of precision and
recall with respect to the log that the system collects. In Ta-

ble 2, we report the F-measure ((�2+1)PR
�2P+R , with � = 1) that

smooths precision and recall.

Results
Tables 1, 2, and 3 show the results for the cumulative mea-
sures across the three problems (individual problems show
the same trends).

Although individually all but one or two measures fa-
vor DIAG-NLP1, differences are not statistically signifi-
cant. Indicator consultationscomes closest to significance
with a non-significant trend in favor of DIAG-NLP1 (Mann-
Whitney test,U=98, p=0.11).



Figure 1: A screen from a DIAG application on home heating

DIAG-orig DIAG-NLP1
Total Time 29.8’ 28.0’
Feedback Time 6.9’ 5.4’
Indicator consultations 11.4 5.9
RU consultations 19.2 18.1
Parts replaced 3.85 3.33

Table 1: Performance measures

DIAG-orig DIAG-NLP1
Essay score 81/100 83/100
RU recollection .72 .63

Table 2: Learning and recollection measures

We therefore apply the binomial cumulative distribution
function (BCDF), or one-tailed Sign Test, to assess whether
DIAG-NLP1 is better than DIAG-orig. This test measures
the likelihood that DIAG-NLP1 could have beat DIAG-orig
onm or more out ofn independent measures under the null
hypothesis that the two systems are equal. This test is in-
sensitive to the magnitude of differences in each measure,
noticing only which condition represents a win ((Di Euge-
nio, Glass, & Scott 2002) discusses the BCDF further).

Table 4 combines the independent measures from Tables
1, 2, and 3, showing which condition was more successful.
The result shows 9/10 (or 8/10) wins for DIAG-NLP1. Since
one measure was tied, we report two sets of probabilities
assuming that the tied measure favored DIAG-orig or DIAG-
NLP1 respectively.

The probability of 9/10 (or 8/10) successes for DIAG-
NLP1 under the null hypothesis isp = 0:01 (or 0:054),
showing a significant (or marginally significant) win for

DIAG-orig DIAG-NLP1
Usefulness 4.35 4.47
Helped stay on right track 4.35 4.35
Not misleading 4.00 4.12
Conciseness 3.47 3.76

Table 3: Usability measures

DIAG-orig DIAG-NLP1
Total Time

p
Indicator consultations

p
RU consultations

p
Parts replaced

p
Essay score

p
RU recollection

p
Usefulness

p
Helped stay on right track

p p
Not misleading

p
Conciseness

p

Table 4: Successes for each system

DIAG-NLP1. If we question whetherTotal Timeis inde-
pendent of the other measures, thenp = 0:02 (or 0:09) for
8/9 (or 7/9) wins, which is at best a statistically significant
and at worst a marginally significant win for DIAG-NLP1.

Had we followed the customary practice of discarding
the tied measure (Siegel & Castellan 1988),1 DIAG-NLP1
would win 8/9,p = 0:02, or 7/8,p = 0:035 (depending on
the inclusion ofTotal Time), which are both significant.

1Discarding tied measures appears to be discarding support for
the null hypothesis, so we do not argue for this approach (Di Euge-
nio, Glass, & Scott 2002).



The visual combustion check is igniting which is abnormal in this startup mode (normal is combusting)
Oil Nozzle always

produces this abnormality when it fails.
Oil Supply Valve always

produces this abnormality when it fails.
Oil pump always

produces this abnormality when it fails.
Oil Filter always

produces this abnormality when it fails.
System Control Module sometimes

produces this abnormality when it fails.
Ignitor Assembly never

produces this abnormality when it fails.
Burner Motor always

produces this abnormality when it fails.
and, maybe others affect this test.

The visual combustion check indicator is igniting which is abnormal in startup mode.
Normal in this mode is combusting.

Within the Oil Burner
These replaceable units always produce this abnormal indication when they fail:

Oil Nozzle;
Oil Supply Valve;
Oil pump;
Oil Filter;
Burner Motor.

The Ignitor assembly replaceable unit never produces this abnormal indication when it fails.

Within the furnace system,
The System Control Module replaceable unit sometimes produces this abnormal
indication when it fails.

Also, other parts may affect this indicator.

Figure 2: DIAG-orig (top) versus DIAG-NLP1 (bottom) replies to the sameConsult Indicatorquery

We can then conclude that the better measures for DIAG-
NLP1, albeit individually not statistically significant, cumu-
latively show that DIAG-NLP1 outperforms DIAG-orig.

The second prototype: DIAG-NLP2
DIAG-NLP2 arose from the following consideration: al-
though DIAG-NLP1 aggregates content by system and cer-
tainty, it still produces repetitive feedback. At the same time,
DIAG-NLP1 was faster to build than a full fledged NL gen-
erator. We were interested in whether we could maintain the
basic architecture of DIAG-NLP1 and at the same time make
the aggregate content significantly more fluent and compre-
hensible. In DIAG-NLP2, specific rhetorical relations such
as contrastand concessionwere introduced based on the
data itself in a bottom-up fashion rather than being planned
top-down by the discourse planner. Our aim was to show
that in cases like ours, in which the back-end system pro-
vides fairly structured content to be communicated in inde-
pendent turns, text coherence and fluency can be achieved
with techniques that work locally. DIAG-NLP2 generates
text by coupling EXEMPLARS with the SNePS Knowl-
edge Representation and Reasoning System (Shapiro 2000).
SNePS allows us to recognize structural similarities easily,

use shared structures, and refer to whole propositions.
Figure 3 gives another response generated by DIAG-

NLP1 (top). The response aggregates information about
RUs first by system (in this example oil burner and furnace)
and then by the certainty with which the unit, if it has failed,
might result in the observed symptom (“always”, “often”,
“sometimes”, “never”). Although the aggregation imposes
an organization on the information, it still fails to make that
organization quickly understandable. For example, it is easy
to overlook the transition between certainty values “never”
and “always” in going from 4-9 to 10.

Figure 4 gives the same response as generated by DIAG-
NLP2. Note that the aggregate structure is still the same.
However, thecontrastrhetorical relation (Mann & Thomp-
son 1988) is used between units that “never” (lines 7-8) and
units that “always” (lines 9-10) cause the indication begin
discussed.

At first glance, it might seem that the system must for-
mulate a goal to impress the student with the importance of
some of these dimensional values. However, DIAG-NLP2
highlights the dimensional structures of the aggregation and
their values using inexpensive techniques for text structur-
ing and for referential expression generation, a more robust



1 The Oil flow indicator is not flowing which is abnormal in startup mode.
2 Normal in this mode is flowing.

3 Within the Oil Burner
4 These replaceable units always produce this abnormal indication when they fail:
5 Oil Nozzle;
6 Oil Supply Valve;
7 Oil pump;
8 Oil Filter;
9 Burner Motor.

10 The Ignitor assembly replaceable unit never produces this abnormal indication when
it fails.

11 Within the Furnace System
12 The System Control Module replaceable unit sometimes produces this abnormal indication

when it fails.

Figure 3: Another response by DIAG-NLP1

1 The oil flow indicator is not flowing in startup mode.
2 This is abnormal.
3 Normal in this mode is flowing.

4 Within the Furnace System,
5 this is sometimes caused if
6 the system control module has failed.

7 Within the oil burner,
8 this is never caused if the ignitor assembly has failed.
9 In contrast, this is always caused if

10 the burner motor, oil filter, oil pump, oil supply valve, or oil nozzle has failed.

Figure 4: The same response as generated by DIAG-NLP2

knowledge representation of the domain, and a small amount
of lexical information.

Unlike DIAG-NLP1, in DIAG-NLP2, we prefer aggre-
gations that have fewer dimensional values as the first di-
mension to present, and we generate referential expressions,
including references to whole propositions.In DIAG-NLP1,
information is always aggregated first by subsystem and sec-
ond by certainty. In DIAG-NLP2, we select the aggregation
with the smaller top-level branching factor. (Systemis the
default if there is a tie.) The intuition is that the top-level
dimension of the aggregation should have as few dimension
values as possible so as not to overwhelm the student with
value categories. Moreover, when the dimension values are
scalar, and there are several items (more than 2) that fall
under one dimensional value, it appears to be important to
highlight this aggregation with a summary statement.

Whereas DIAG-NLP1 generated referential expressions
ad hoc, in DIAG-NLP2 we implemented the GNOME algo-
rithm to generate referential expressions (Kibble & Power
2000). It uses insights from centering (Grosz, Joshi, & We-
instein 1995) and from theories of salience. Importantly,
SNePS allows us to treat propositions as discourse entities
that can be added to the discourse model. The GNOME al-
gorithm is then used to generate references to those proposi-
tions, such asthis in line 2, Figure 4.Thisrefers to the entire

clause in line 1.
We have just run a user study to evaluate DIAG-NLP2,

but we have not concluded the data analysis yet.

The third prototype: DIAG-NLP3

DIAG-NLP3 is being developed on the basis of a corpus
study. We conducted a constrained data collection to un-
cover empirical evidence for the EXEMPLARS rules we
implemented in DIAG-NLP1 and DIAG-NLP2. Doing the
implementation first and then looking for empirical evi-
dence may appear backwards. As one of our goals was to
rapidly improve DIAG-orig’s output and evaluate the im-
provement, we could not wait for the result of an empir-
ical investigation. In this, our work follows much work
on aggregation (Dalianis 1996; Huang & Fiedler 1996;
Shaw 1998), in which aggregation rules and heuristics are
plausible, but are not based on any hard evidence.

To understand how a human tutor may verbalize a collec-
tion of facts, we collected 23 tutoring dialogues (for a total
of 270 tutor turns) between a student interacting with the
DIAG application on home heating and a human tutor. The
tutor and the student are in different rooms, sharing images
of the same DIAG tutoring screen. Communication is typed
but does not have “Wizard of Oz” secrecy. When the student
consults DIAG, the tutor sees the information that DIAG



would use in generating its advice — exactly the same infor-
mation that DIAG gives to EXEMPLARS in DIAG-NLP1
and DIAG-NLP2. The tutor then types a response that sub-
stitutes for DIAG’s response. Although we cannot constrain
the tutor to mention all and only the facts that DIAG would
have communicated, we can still analyze how the tutor uses
the information provided by DIAG.

We have developed a coding scheme (Glasset al. 2002)
and annotated the data (all of the data has been annotated
by one coder and at least half of it by a second coder). The
difference between DIAG response style and human tutors
is striking. Specifically:

� in 71% of the cases, tutors teach: they don’t just para-
phrase the knowledge that DIAG presents to them, but

– in 21% of the cases, they evaluate what the student did
or asked aboutThe infrared sensor is a good thing to
think about;

– in 50% of the cases, they suggest the next course of
action:Check the sensors.

� Tutors do not usually provide lists of replaceable units,
abstracting away from individual parts as possible (see
below for examples)

� Tutors frequently omit mention of parts that cannot be
causing the problem.

Human tutors eschew syntactic aggregation of part lists
and instead describe functional aggregations of parts. This
is consistent with Paris’ work on the TAILOR system for
describing patented systems. For a reader with little or no
knowledge of the domain, TAILOR was designed to plan a
description of an object in terms of its function and the func-
tion of its parts (Paris 1988). On the one hand, these results
lend support to the rule that groups parts according to the
system hierarchical structure that we implemented in DIAG-
NLP1 and DIAG-NLP2. However, the aggregations favored
by human tutors go one step further: they are at a functional
level. For example, the same assemblage of parts, i.e., oil
nozzle, supply valve, pump, filter, etc, can be described as
the other items on the fuel line, asthe path of the oil flow,
or asthe units that the oil would normally flow through.

On the basis of this, we are developing a third prototype
that mirrors the findings from the corpus. The NLG archi-
tecture has been completely redesigned, so as to make it
more flexible. Moreover, the NLG system is now coupled
to RealPro (Lavoie & Rambow 1997) that performs syntac-
tic and lexical realization. RealPro is a text generation ”en-
gine” that performs syntactic realization. RealPro provides
a grammar rule engine that can generate text from sophisti-
cated, multi-level linguistic representations. The abstraction
it provides makes it easy to generate many syntactic variants
of the same semantic content on demand.

DIAG-NLP3 has been fully implemented with respect to
feedback on indicators, but still needs development on feed-
back for replaceable units. Figure 5 shows the response
generated by DIAG-NLP3 in response to the same query
to which DIAG-ORIG and DIAG-NLP1 respond in Fig-
ure 2. Note how the long list of parts has been replaced
by an abstract description; moreover, there is no mention of

parts who are unlikely to cause the problem (i.e., the sys-
tem control module and the ignitor assembly in Figure 2).
We believe that DIAG-NLP3 generates the clearest, most
natural sounding and least repetitive responses of all proto-
types, even if we have weak anecdotal evidence to the con-
trary.2 While evaluating DIAG-NLP2, we gave subjects one
pair of responses, the one by DIAG-NLP3 shown in Fig-
ure 5, and the corresponding one generated by DIAG-NLP2.
We then asked them to express their preference between the
two. Thirteeen subjects preferred DIAG-NLP2, nine DIAG-
NLP2, and one expressed no preference. Of course, only a
formal evaluation can really tell us whether DIAG-NLP3’s
responses are better than the other prototypes’. We will con-
duct it as soon as DIAG-NLP3 is completed.

Towards more efficient development and
evaluation in the small shop

Now that we have provided a sense for the project in general,
we will detail the associated timelines. DIAG-NLP1 took six
months to develop plus three months to evaluate (this com-
prises both running subjects and analyzing the data). DIAG-
NLP2 exploited tools developed for DIAG-NLP1, therefore
it only took two full-time person months to develop, plus an-
other two to evaluate. The data collection and analysis that
we described took at least one year. DIAG-NLP3 has taken
at least 4 months so far, it will probably take at least another
two to complete, and another two or three to evaluate. Each
of the systems / evaluations / data collection was done by
one person (graduate student or consultant or postdoc), un-
der the supervision of the first author, and with occasional
help from one other graduate student.

To put this timeline in perspective, note that in all these
cases, system development was simplified by the con-
strained task that the system has to perform, and by using
software components such as EXEMPLARS, RealPro and
SNePS. Using existing software is a tremendous help, al-
though of course at a cost, given a substantial learning curve
is incurred. Clearly, developing a full fledged dialogue sys-
tem would require far more extensive resources: it is not
an enterprise in which a single researcher with one or two
graduate students can really embark. What are the possi-
ble approaches the natural language software development
and testing in this context? We put forth a few ideas with
the hope more will come forth at the symposium. Although
much of what we discuss is “wishful thinking”, our outlook
on these issues has become more optimistic since submitting
the original paper just a few months back. This is because
we found evidence that developing standards for annotation
may not be utopic after all, and that training across corpora
may be highly beneficial for system development (Chenet
al. 2002). More details in what follows.

Data collection / analysis. The only answer seems to be
to develop repositories of tagged corpora. Special inter-
est groups such as ACL-SigDIAL (http://www.sigdial.org)

2Supporting one anonymous reviewer’s observation that s/he
would prefer DIAG-NLP1’s version to DIAG-NLP3’s.



The combustion is abnormal.
In the oil burner, check the units along the path of the oil and the burner motor.

Figure 5: Response generated by DIAG-NLP3 (contrast with the response by DIAG-NLP1 in Figure 2)

do collect annotated corpora. But even when such cor-
pora are available, the annotation always suffers from be-
ing special purpose, since everybody including ourselves
is collecting their data for some very specific purpose. To
us, the answer is that standards for annotation should be
developed so that corpora can be effectively shared. The
common objection to such an approach, voiced for ex-
ample by one of the reviewers of this paper, is that a
standard is impossible because annotation depends onba-
sic beliefs about the definition and importance of var-
ious discourse phenomena. Discourse has not yet be-
come standardized the way syntax has.This is certainly
true, and it may be a reason why the Discourse Resource
Initiative (http://www.georgetown.edu/luperfoy/Discourse-
Treebank/dri-home.html) is stalled and it is not clear
whether it will ever resume. The DRI tried to develop at
least a skeleton of a standard coding scheme for dialogue
and discourse (Allen & Core 1997). A related effort was
MATE (the Multilevel Annotation, Tools Engineering eu-
ropean project, http://mate.nis.sdu.dk/), which also devoted
considerable effort to both a standard coding scheme and
tools to support annotations. As far as we know, the tool
(the MATE workbench (Dybkjæret al. 2000)) has gener-
ated quite some interest, but not the annotation framework
per se.

On the bright side though, it is of note that the DRI
draft annotation scheme (Allen & Core 1997) has been used
by a variety of projects as the foundation of their anno-
tation schemes. Among them: SWBD-DAMSL (Jurafsky,
Shriberg, & Biasca 1997) developed for a corpus of generic
phone conversations; COCONUT (Di Eugenio, Jordan, &
Pylkkänen 1998), used to code collaborative computer-
mediated dialogues; the schemes used on the Italian spoken
corpora ADAM and AVIP (Soria 2002); the scheme devel-
oped for the French corpus AMITIÉS (Hardyet al. 2002)
which consists of customer calls to financial call centers.

Moreover, a more fruitful approach to developing annota-
tion standards may be focusing onreference tasks, as re-
cently explored at the ISLE workshop on Dialogue Tag-
ging for Multi-modal Human Computer Interaction. The
idea is to identify specific reference tasks to which a tag
set is relevant, rather than developing a tag set that is
supposed to apply across any discourse / dialogue genres
(http://www.research.att.com/ walker/isle-dtag-wrk/).

Finally, there are efforts to automatically or at least semi-
automatically label corpora for dialogue acts, given a small
manually annotated portion of the data, see e.g. (Walker,
Passonneau, & Boland 2001). It remains to be seen how
successful and portable across domains such taggers will be.

System development. Again, one answer is to develop
repositories of reusable software components. For exam-

ple, we used NL generation components provided by Co-
GenTex Inc. In fact, it appears to us that at the moment it is
easier to share software than corpora. The most ambitious
embodiment of this approach is the DARPA communicator,
which supports aplug and playarchitecture via the Galaxy
Communicator. This is aa distributed, message-based, hub-
and-spoke infrastructure optimized for constructing spoken
dialogue systems(http://fofoca.mitre.org/). The idea is that
one could plug in one’s own components into the underly-
ing software architecture. Several sites are adopting this ap-
proach in developing their dialogue systems. A plug-and-
play architecture if indeed usable would definitely help, al-
though it would not solve the basic problem: how to develop
the individual components to plug in.

Reusabletrainable software components seem to be the
answer. However, we go back to the original problem: how
to build the annotated corpora necessary to train them on.
Recent work opens some exciting possibility in this regard.
(Chenet al. 2002) provides some evidence that a system
can be successfully trained on a corpus which was devel-
oped and annotated for adifferentapplication in adifferent
domain. (Chenet al. 2002) shows that a surface realizer
trained on a small partially parsed in-domain corpus (the do-
main is travel planning) performs better than if trained on a
larger corpus such as the Penn TreeBank (Marcus, Santorini,
& Marcinkiewicz 1993). However, they also show that if
the realizer is trained using automatically extracted gram-
mars, a larger, out-of-domain corpus such as the Penn Tree-
Bank is more beneficial than the small in-domain corpus.
Whether these results can be extended to other domains and
other components of a dialogue system remains to be seen.
However, it is definitely an exciting avenue to explore.

Evaluation. How can we save time and avoid reduplica-
tion of effort? It should become common practice to con-
tract out evaluation to external consultants. This, of course,
requires funds to pay them, so it would not help small re-
search groups. One solution may be to evaluate software
against additional corpora instead of actual users. Evalua-
tion on a corpus cannot answer questions pertaining to cog-
nitive effects, but can at least show whether the system per-
forms up to specifications. Of course, such an evaluation
requires a corpus annotated in an appropriate way, so we go
back to the issues raised earlier.

Collaboration. A general approach is to develop collabo-
rations among small (and large!) research groups and as-
sign different groups responsibility for corpora collection
and analysis, system development, and evaluation. The ad-
vantage is that some subtasks could be pipelined (for exam-
ple, corpora analysis could be ongoing with early system de-
velopment). The disadvantage is that is would require close



coordination among these groups which might be overly op-
timistic.

References
Allen, J., and Core, M. 1997. Draft of DAMSL: Dialog
act markup in several layers. Coding scheme developed by
the participants at two Discourse Tagging Workshops, Uni-
versity of Pennsylvania March 1996, and Schloß Dagstuhl,
February 1997.
Carenini, G., and Moore, J. D. 2000. An empirical study
of the influence of argument conciseness on argument ef-
fectiveness. InProceedings of the 38th Annual Meeting of
the Association for Computational Linguistics.
Chen, J.; Bangalore, S.; Rambow, O.; and Walker, M. A.
2002. Towards automatic generation of natural language
generation systems. InCOLING02, Proceedings of the
Ninteenth International Conference on Computational Lin-
guistics.
Dalianis, H. 1996.Concise Natural Language Generation
from Formal Specifications. Ph.D. Dissertation, Depart-
ment of Computer and Systems Science, Stocholm UNi-
versity. Technical Report 96-008.
Di Eugenio, B.; Glass, M.; and Scott, M. J. 2002. The bi-
nomial cumulative distribution, or, is my system better than
yours? InLREC2002, Proceedings of the Third Interna-
tional Conference on Language Resources and Evaluation.
Di Eugenio, B.; Glass, M.; and Trolio, M. J. 2002. The
DIAG experiments: Natural Language Generation for In-
telligent Tutoring Systems. InINLG02, The Third Inter-
national Natural Language Generation Conference, 120–
127.
Di Eugenio, B.; Jordan, P. W.; and Pylkk¨anen, L. 1998. The
COCONUT project: Dialogue annotation manual. Techni-
cal Report ISP 98-1, University of Pittsburgh. Available at
http://www.isp.pitt.edu/˜intgen/research-papers.
Dybkjær, L.; Møller, M. B.; Bernsen, N. O.; Olsen, M.; and
Schiffrin, A. 2000. Annotating communication problems
using the MATE workbench. InLREC2000, Proceedings
of the Second International Conference on Language Re-
sources and Evaluation, 1557–1564.
Glass, M.; Raval, H.; Di Eugenio, B.; and Traat, M. 2002.
The DIAG-NLP dialogues: coding manual. Technical Re-
port UIC-CS 02-03, University of Illinois - Chicago.
Grosz, B.; Joshi, A.; and Weinstein, S. 1995. Centering:
A Framework for Modeling the Local Coherence of Dis-
course.Computational Linguistics21(2):203–225.
Haller, S., and Di Eugenio, B. 2002. Text structuring to
improve the presentation of aggregated content. Technical
Report UIC-CS-02-02, University of Illinois - Chicago.
Hardy, H.; Baker, K.; Devillers, L.; Lamel, L.; Rosset, S.;
Strzalkowski, T.; Ursu, C.; and Webb, N. 2002. Multi-layer
dialogue annotation for automated multilingual customer
service. InISLE Workshop: Dialogue Tagging for Multi-
Modal Human Computer Interaction.
Huang, X., and Fiedler, A. 1996. Paraphrasing and aggre-
gating argumentative text using text structure. InProceed-

ings of the 8th International Workshop on Natural Lan-
guage Generation, 21–30.
Jurafsky, D.; Shriberg, E.; and Biasca, D. 1997. Switch-
board SWBD-DAMSL Shallow-Discourse-Function An-
notation Coders Manual, Draft 13. Technical Report 97-
02, University of Colorado, Boulder. Institute of Cognitive
Science.
Kibble, R., and Power, R. 2000. Nominal generation in
GNOME and ICONOCLAST. Technical report, Informa-
tion Technology Research Institute, University of Brighton,
Brighton, UK.
Lavoie, B., and Rambow, O. 1997. A fast and portable real-
izer for text generation systems. InProceedings of the Fifth
Conference on Applied Natural Language Processing.
Mann, W. C., and Thompson, S. 1988. Rhetorical Structure
Theory: toward a Functional Theory of Text Organization.
Text8(3):243–281.
Marcus, M.; Santorini, B.; and Marcinkiewicz, M. A.
1993. Building a large annotated corpus of English: the
Penn Treebank.Computational Linguistics19(2):313–330.
Paris, C. L. 1988. Tailoring object descriptions to the user’s
level of expertise.Computational Linguistics14(3):64–78.
Reape, M., and Mellish, C. 1998. Just whatis aggregation
anyway? InProceedings of the European Workshop on
Natural Language Generation.
Shapiro, S. C. 2000. SNePS: A logic for natural language
understanding and commonsense reasoning. In Iwanska,
L. M., and Shapiro, S. C., eds.,Natural Language Pro-
cessing and Knowledge Representation. AAAI Press/MIT
Press.
Shaw, J. 1998. Segregatory coordination and ellipsis in text
generation. InProceedings of the 36th Annual Meeting of
the Association for Computational Linguistics, 1220–1226.
Siegel, S., and Castellan, Jr., N. J. 1988.Nonparametric
statistics for the behavioral sciences. McGraw Hill.
Soria, C. 2002. Dialogue tagging for general purposes: the
ADAM andAVIP projects. InISLE Workshop: Dialogue
Tagging for Multi-Modal Human Computer Interaction.
Towne, D. M. 1997. Approximate reasoning techniques
for intelligent diagnostic instruction.International Journal
of Artificial Intelligence in Education.
Walker, M. A.; Passonneau, R.; and Boland, J. E. 2001.
Qualitative and quantitative evaluation of DARPA commu-
nicator dialogue systems. InACL01, Proceedings of the
39th Annual Meeting of the Association for Computational
Linguistics.
White, M., and Caldwell, T. 1998. Exemplars: A practical,
extensible framework for dynamic text generation. InPro-
ceedings of the Ninth International Workshop on Natural
Language Generation, 266–275.
Young, R. M. 1997. Generating Descriptions of Com-
plex Activities. Ph.D. Dissertation, Intelligent Systems Pro-
gram, University of Pittsburgh.


