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Abstract. This paper addresses the problem of real-word spell checking,
i.e., the detection and correction of typos that result in real words of the
target language. This paper proposes a methodology based on a mixed
trigrams language model. The model has been implemented, trained,
and tested with data from the Penn Treebank. The approach has been
evaluated in terms of hit rate, false positive rate, and coverage. The
experiments show promising results with respect to the hit rates of both
detection and correction, even though the false positive rate is still high.

1 Introduction

Spell checking is the process of finding misspelled words in a written text, and
possibly correct them. This problem has been widely studied, and spell checkers
are probably among the first successful NLP applications widely used by the
general public.

We can classify spelling errors in two main groups: non-word errors and
real-word errors.

– Non-word errors are spelling errors that result in words that do not exist in
the language. For example,

* The bok is on the table.
The word bok does not exist in English, and it probably derives from a typo
of the noun book :

The book is on the table.
– Real-word errors are errors that by chance end up to actual words. For

example,
* I saw tree trees in the park.

The noun tree exists in English, but in this context it is most likely a typo
of the numeral three:

I saw three trees in the park.

According to Kukich, the problem of spell checking can be classified in three
categories of increasing difficulty: non-word error detection, isolated-word error
correction, and context-dependent word correction [1]. The real-word errors de-
tection and correction task, focus of this paper, belongs to the third category.



Such errors are the most difficult to detect and correct, because they cannot be
revealed just by a dictionary lookup, but can be discovered only taking context
into account.

Different approaches to tackle the issue of real-word spell checking have been
presented in the literature. Symbolic approaches [2] try to detect errors by pars-
ing each sentence and checking for grammatical anomalies. More recently, some
statistical methods have been tried, including the usage of word n-gram mod-
els [3, 4], POS tagging [5–7], Bayesian classifiers [8], decision lists [9], Bayesian
hybrid methods [10], a combination of POS and Bayesian methods [7], and La-
tent Semantic Analysis [11].

The main problem with word n-grams is data sparseness, even with a fairly
large amount of training data. In fact, a recent study [4] reported better perfor-
mances using word bigrams rather than word trigrams, most likely because of
the data sparseness problem. POS based methods suffer less of sparseness prob-
lems, but such approaches are unable to detect misspelled words that are of the
same part of speech. Bayesian methods, on the other hand, are better able to
detect this cases, but have worse general performance. These last two methods
give better results when combined together [7].

A slightly different application area in which statistical contextual spell
checking have been also studied is Optical Character Recognition (OCR). For
this application, Markov Model based approaches using letter n-grams have been
shown to be quite successful [12].

2 A Mixed Trigrams Approach

This paper proposes a statistical method based on a language model that is a
combination of the word-trigrams model and the POS-trigrams model, called
mixed trigrams model. The main linguistic motivation behind this model is to
represent fine-grained lexical information at a local level, and summarize the
context with syntactic categories. The main advantage of this model is a great
reduction of the data sparsity problem. The following subsections formally define
the model and the method to apply it to the spell checking problem.

2.1 Mixed Trigrams

Given a sentence, a mixed trigram is a sequence of three elements (ei, ei+1, ei+2),
where a generic element ek is either the k-th word of the sentence or its part
of speech. The particular type of mixed trigrams used in this work has the
additional property that at most one of the elements can be a word. For example,
consider the sentence:

The/DET kids/NOUN eat/VERB fresh/ADJ apples/NOUN

A complete set of mixed trigrams deriving from this sentence is the following:



(The, NOUN, VERB)
(NOUN, VERB, ADJ)
(VERB, ADJ, NOUN)
(DET, kids, NOUN)
(kids, VERB, ADJ)
(DET, NOUN, eat)
(NOUN, eat, ADJ)
(eat, ADJ, NOUN)
(DET, NOUN, VERB)
(NOUN, VERB, fresh)
(VERB, fresh, NOUN)

Additional trigrams can be considered by adding two “start of sentence” spe-
cial words and two “end of sentence” special words, to capture the distinctions
between words at the beginning, in the middle, or at the end of a sentence.

2.2 Confusion Sets

Another key definition is that of confusion set.

Given a dictionary W , a distance function d defining a metric on W , and
a word w ∈ W , a confusion set C(w) ⊆ W is a set of words such that
wc ∈ C ⇔ |d(w,wc)| ≤ k, where k is a constant.

In practice, the confusion set of a word contains all the words “similar enough”
to that word. The main issue is then to define a reasonable distance function.

2.3 Levensthein Distance

The Levensthein distance, also known as minimum edit distance [13], is the mini-
mum number of editing operations necessary to transform one word into another.
An editing operation is either a character insertion, deletion, or substitution. The
rationale behind the adoption of such a measure is that it reflects quite well some
common typing mistakes, like pressing a key twice, typing two keys instead of
one, skipping a key, and typing a key instead of another. Such mistakes lead to
words with Levensthein distance of 1 from the original word. Another common
mistake is switching two characters (e.g., typing form instead of from). In this
case, the wrong word and the correct word will have a Levensthein distance of 2.
These kind of mistakes have been found to represent the vast majority of typing
errors [14–16]. So, it sounds reasonable to include in the confusion set of a word
all the words with Levensthein distance less or equal than 2 from the original
word.

2.4 Method

Consider the following problem.



Given a sentence S = w1 . . . wk . . . wn, find the most likely sequence of
elements E = t1 . . . wc

k . . . tn, where:
– wi, 1 ≤ i ≤ n are words;
– wk is the central word (i.e., the word to be checked);
– ti, 1 ≤ i ≤ n, i 6= k are part of speech tags;
– wc

k is a word belonging to the confusion set of the central word wk

(ideally, it should be the correct word).

The observed word wk is likely to be a spelling mistake of wc
k if:

1. wk 6= wc
k, and

2. the probability of the sequence E is smaller than the probability of another
sequence Ē = t̄1 . . . w̄c

k . . . t̄n such that w̄c
k = wk. In other words, the sequence

Ē is the most likely sequence of elements where the central word wk is
assumed to be correct. In practice, it is calculated by “forcing” the confusion
set of the central word to contain only one element, equal to the central word
itself.

The criterion above means that a word will be detected as a spelling mistake if
another word in the confusion set has higher likelihood of fitting into the same
context. In particular, the word in the confusion set belonging to the sequence
with the highest probability will be selected by the correction algorithm. This
maximization problem can be solved using the Markov Model approach tradi-
tionally applied to POS tagging, adopting the same simplifying assumptions,
and using mixed trigrams instead of word trigrams. The resulting formula is:

argmaxE

n∏
i=1

P (wi|ei)P (ei|ei−1ei−2)

In the previous formula, the variables wi are words, and the variables ei are
either words or POS tags. The Viterbi algorithm [17] can be used to efficiently
compute the sequence E. Figure 1 provides an intuitive example of how the
detection process works.

2.5 Conditional Probability Estimation for the Central Word

In the previous formula, for i = k (i.e., the index of the central word), the
term P (wi|ei) = P (wk|wc

k) means the probability of getting the word wk from a
misspelling of the word wc

k. This probability cannot be easily estimated from a
corpus. To estimate a value for this probability term, we define it as a function
of the distance between the two words, such that the probability is lower if the
distance between the words is greater. In other words, the assumption is that it
is more likely to get a similar word, rather than a very different word, as result
of a spelling mistake.

P (wk|wc
k) =

α(1− α)d(wc
k,wk)

count(λ ∈ W : d(λ, wk) = d(wc
k, wk))

The value of the parameter α should be tuned with empirical investigation.



Fig. 1. Example of detection process

3 Experimental Settings

The method described in the previous section has been implemented and em-
pirically evaluated. The following subsections present some details of the exper-
imental settings.

3.1 Algorithm Training

Training the algorithm requires (a) creating a vocabulary, (b) gathering the
probability estimations of the mixed trigrams and the conditional probabilities
of each word given a POS, (c) calculating the distances among the words in
the vocabulary, (d) calculating the conditional probability of each word given
another word in its confusion set.

The vocabulary was created from the same corpus used to estimate trigrams
and word-POS probabilities. Capitalization was removed, and the least frequent
words (tokens with less than four occurrences) were not inserted in the vocab-
ulary and their occurrences in the corpus were replaced with a special symbol
for “unknown” words. The reasons are (1) to keep the dictionary and the prob-
abilities table small, and (2) to gather good probability estimations to deal with
real unknown words. In fact, even though the spell checking algorithm will check
only the words present into the dictionary, the unknown words will be part of
the surrounding context, so they have to be managed as well.

Trigrams and word-POS probabilities were estimated from portions of the
WSJ section of the Penn Treebank corpus. Probabilities have been computed
using the Maximum Likelihood Estimator (MLE) formula. The zero-probabilities
were smoothed assigning a very small constant value to them. This smoothing
method, however, introduces distortions in the probability space. The impact,
hopefully small, of this distortion to the performance of the algorithm should
be evaluated and corrected in future work; most likely, a more sophisticated
smoothing technique should be used.



Three training data sets of increasing size have been tried. Table 1 shows
some statistics about them. The number of tokens pruned by discarding the
least frequent words from the vocabulary is noticeable; the effect was expected,
and followed Zipf’s law.

Table 1. Training corpus chunks used in the experiments

The Levensthein distance measure was calculated for each pair of words in the
vocabulary. This step is necessary for the determination of the confusion set of
each word, that is computed at run-time looking for the words with Levensthein
distance less or equal than 2 to the considered word.

The final training step is the calculation of the conditional probabilities that
relate a word with its confusion set. To do that, the formula defined in the
previous section was used, with three different values of α (0.25, 0.50, 0.75) for
each of the three training sets. The total number of experimental settings was 9.

3.2 Test Data

A testing set of 500 sentences was collected from section 20 of the WSJ Penn
Treebank. These sentences were randomly selected among the sentences with
number of words between 10 and 301. For each sentence in the test set, one
spelling mistake was artificially inserted, by replacing a random word (among
those words longer than two characters) with a word in its confusion set. This
artificial insertion of spelling mistakes makes the test set ecologically invalid.
However, this choice was considered appropriate for this first experimental stage,
because choosing the test set in this way gives each “spelling mistake” a chance
to be detected. In other words, the detection upper bound would be 100%, which
makes it easier to interpret the final results.

3.3 Performance Measures

The following performance measures are considered relevant.

– Detection hit rate. It is the ratio between the number of typos detected and
the total number of typos. The higher, the better.

1 Since for each sentence in the WSJ corpus two special “start of sentence” tokens and
two “end of sentence” tokens were added, the net number of “real” words in the test
sentences actually ranges from 6 to 24 words.



– Correction hit rate. It is the ratio between the number of typos corrected
and the total number of typos. This ratio is usually lower than the detection
hit rate, because a spelling mistake can be rightly detected but corrected in
a wrong way.

– False positive rate on checked words. It is the ratio between the number of
false positives (i.e., correct words that are wrongly detected as typos) and
the number of words checked by the algorithm. The lower, the better.

– False positive rate on total words. It is the ratio between the number of false
positives and the total number of words in the tested sentences. Since not
all the words are checked by the algorithm (see below), this ratio is usually
lower than the false positive rate on checked words.

– checked over unknown words ratio. It is the ratio between the number of
words checked and the number of words skipped by the algorithm because
not in the vocabulary.

– checked over short words ratio. It is the ratio between the number of words
checked and the number of words skipped because shorter than three char-
acters. The reason why the words with less than three characters are skipped
is that the confusion sets of short words were unmanageably high. In order
to be able to check short words too, further research is needed in order to
figure out how to prune the confusion set.

– checked over skipped words ratio. It is the ratio between the number of words
checked and the total number of words skipped (unknown + short).

– detected over false positive ratio. It is the ratio between the number of de-
tected typos and the number of false positives.

4 Experimental Results

4.1 Hit and False Positive Rates

Figure 2, Figure 3, and Figure 4 show the results of detection and correction
hit rates (%), false positive rate on checked and total words (%), and the ratio
between detected typos and false positives for the 9 possible combinations of the
parameters (training corpus size and α value).

To put those numbers in perspective, the only results found in the literature
that are somewhat comparable are those reported in [4]. Those experiments
scored a maximum of 92% detection hit rate and 30% false positive rate with a
word bigrams model; 55% detection hit rate and 18% false positive rate with a
word trigrams model.

One might expect that the performance of the system would improve as the
size of the training corpus increases, because a larger training corpus usually
leads to a better estimation of the model’s probability tables. In fact, Figure 3
shows a trend of reduction of the false positive rate as the corpus size gets larger.
However, the results on hit rate do not display a similar positive trend. Also,
both hit rate and false alarm rate show very little sensitivity with respect to the
α parameter. This fact is interesting and unexpected.



Fig. 2. Hit rates

Fig. 3. False positive rates



Fig. 4. Detected over false positive ratio

4.2 Coverage

Figure 5 shows the results for the coverage measures, i.e., checked over unknown,
checked over short, and checked over skipped ratios. Those measures are inde-
pendent on the values of α, as they depend only on the training corpus.

The coverage of the unknown words increases noticeably with the corpus size,
because with a larger corpus more words are added to the vocabulary. However,
the overall coverage is still depressed by the high amount of short words, that
are skipped anyway.

5 Conclusions and Future Work

The results of these experiments are promising, and represent a good starting
point for future research. Among the others, there are several points that would
be worthy of further investigation:

– Improve the estimation of the probability tables, for example by using a
more sophisticated smoothing technique.

– Deal with the problem of short words, that represent an important percent-
age of words that are now skipped.

– Explore the sensitivity of the algorithm to several other parameters, such as
the threshold value to prune the vocabulary, and the length of the context
to take into account.

– Run experiments on ecologically valid data.



Fig. 5. Coverage of the spell checker

– Explore the usage of alternative word distance measures and conditional
probabilities estimations for words with respect to their confusion set.
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