
MUP: The UIC Standoff Markup Tool

Michael Glass and Barbara Di Eugenio
CS. Dept. M/C 152, University of Illinois at Chicago

851. S. Morgan
Chicago, IL, 60607-7053

fmglass|bdieugen g@cs.uic.edu

Abstract

Recently developed markup tools for di-
alogue work are quite sophisticated and
require considerable knowledge and over-
head, but older tools do not support XML
standoff markup, the current annotation
style of choice. For the DIAG-NLP
project we have created a “lightweight”
but modern markup tool that can be con-
figured and used by the working NLP re-
searcher.

Introduction

Speech and text corpora augmented with linguis-
tic annotations have become essential to everyday
NLP. In the realm of discourse-related annotation,
which we are interested in, linguistic annotation is
still mostly a manual effort. Thus, the availability of
coding tools that facilitate a human coder’s task has
become paramount. In this paper we present MUP,
a coding tool for standoff markup which is sophisti-
cated enough to allow for a variety of different mark-
ings to be applied, but which is also simple enough
to use that it does not require a sizable set up effort.

Other coding tools have been developed, and
some of them do in fact target discourse phenomena.
Tools specifically developed to code for discourse
phenomena include Nb (Flammia and Zue, 1995),
DAT (Allen and Core, 1997), MATE (McKelvie et
al., 2001), and the Alembic Workbench (Day et al.,
1997). MUP differs from all of them because it is
standoff (contrary to Nb and DAT), allows tagging
of discontinuous constituents (contrary to Nb), and
is simple to set up and use (contrary to MATE).

We developed MUP within the DIAG-NLP
project (Di Eugenio et al., 2002), which is grafting
an NLG component onto a tutorial program written
in the VIVIDS (Munro, 1994) and DIAG (Towne,
1997) ITS authoring environment. MUP is targeted
to written or transcribed text. Phenomena such as
intonation contours and overlapping speech have no
opportunity to occur in our transcripts. Thus MUP
lacks features that spoken-language phenomena re-
quire of annotation tools, e.g. layers of annotation to
repair disfluencies, the representation of simultane-
ous speakers, and interfaces to speech tools.

Requirements and Alternatives

Our fundamental requirements for a markup tool are
that it 1) use standoff markup, 2) represent source
documents, annotations, and control files in sim-
ple XML, 3) have a simple graphical annotation in-
terface, 4) provide control over element names, at-
tribute names, and attribute values, enforcing consis-
tency in the final markup, and 5) can be configured
and employed by everyday computational linguists
without much effort or training.

In standoff markup (Thompson and McKelvie,
1997) the source text is inviolate and the annota-
tions are kept physically separate, usually in other
files. Annotatable items in the source text contain
labels, while the physically separate annotations re-
fer to these labels. Since annotations are themselves
labeled, complex structures of linked annotated con-
stitutents pointing to each other are representable.

Thompson and McKelvie list three advantages to
standoff markup: 1) the source document might be
read-only or unwieldy, 2) the annotations can devi-
ate from the strictly tree-structured hierarchies that
in-line XML demands, 3) annotation files can be

distributed without distributing the source text. We
note a few more advantages of the standoff style: 4)
discontinuous segments of text can be combined in
a single annotation, 5) independent parallel coders
produce independent parallel annotation files, aiding
the determination of inter-coder reliability, 6) dif-
ferent annotation files can contain different layers
of information, 7) when the source text is regener-
ated from primary sources (for example, to incorpo-
rate more information) existing annotations are pre-
served.

Several years before Thompson and McKelvie,
the Tipster project evolved a similar standoff archi-
tecture for similar reasons (Grishman, 1995). Two
notable differences between Tipster and our own ar-
chitecture are that Tipster annotations refer to abso-
lute byte numbers within an unlabeled source docu-
ment file, and the Tipster architecture does not use
XML or SGML but instead supports its own class
library and internal representation. Other markup
projects, for example the Alembic Workbench, have
taken their cue from Tipster and implemented the
same standoff idea.

We specified XML for an annotation language be-
cause it is a lingua franca: the vocabulary is quite
commonly known, there is a host of XML process-
ing software, people can inspect it, and XML pro-
vides a rich ability to add attributes to elements.

The ATLAS.ti (Muhr, 2002) and the NUD*IST
annotation packages (QSR Corp., 2002) have both
been marketed for many years to researchers in
the “soft” sciences for computer-assisted qualitative
analysis of texts. Their emphasis is on visually il-
lustrating the various codes attached to parts of the
document so the researcher can observe patterns.
Fairly complicated relationships between the anno-
tation tags can be created and visualized. An impres-
sive characteristic of these packages is that ordinary
researchers in non-technical fields can create their
own tags and commence annotating. However the
annotations in these packages point to sections of the
plain-text source document by absolute byte num-
ber. Thus the annotations are not readily available
for inspection or machine processing outside of the
programs’ own interfaces and existing XML-tagged
data cannot readily become a source document for
further markup. These packages are not useful for
the analysis usually needed by NLP projects. It is

<xscript id="t12">
...
<tutor-resp id="t12_turn_3">
<w id="t12_t19">to</w>
<w id="t12_t20">see</w>
<w id="t12_t21">if</w>
<w id="t12_t22">the</w>
<w id="t12_t23">oil</w>
...

Figure 1: Source Document: “to see if the oil...”

interesting to note that the most recent versions of
ATLAS.ti and NUD*IST have been adding the abil-
ity to import and export structured documents and
annotations, in XML and Rich Text Format respec-
tively.

At another extreme are markup tools like DAT,
an annotator for DAMSL (Allen and Core, 1997), a
dense multi-layered annotation scheme rich with at-
tributes. DAT is extremely convenient for the coder,
but it seems to require expert reprogramming when
DAMSL’s tag set changes.

A Taste of MUP

Running MUP requires a source document, a DTD-
like document describing a tag set, a style file con-
trolling how source text and annotations are dis-
played to the user, and optionally an existing annota-
tion file. The coder can then mark up the document
and save the results.

Source Document Figure 1 shows an extract from
a DIAG-NLP project source document. These
source document elements have special meaning:
word elements in line-wrapped text are tagged
<word > or <w>, and formatted lines of text are
tagged with<line > to be displayed without wrap-
ping. These elements must be labeled with XML
ID atributes to be the target of annotations. Other
XML elements may appear in the source document
as desired. All source document elements can be
optionally revealed or hidden for the coder, styled
according to the style file.

Tag Descriptions Each tag is an empty XML el-
ement, described in the tags description file by an
<!ATTLIST> declaration. We omit<!ELEMENT>
declarations as superfluous, so this file is not fully
a DTD. The pop-up dialogue the coder uses for
entering and editing attributes is driven by the

<!ATTLIST> description. Figure 2 illustrates the
description of a tag namedindicator . The id ,
idrefs , andcomment attributes are standard for
all MUP markup tags. This description is inter-
preted, in part, as follows:

� idrefs will contain the IDs of ranges of tar-
get elements for this annotation, selected by the
coder by painting the source text with a cursor.

� The comment attribute, being CDATA, con-
tains arbitrary text typed by the coder.

� The directness , senseref and indi-
cator name attributes, being enumerated
lists, will present a drop-down list of values
to the coder. Notice theindicator name
is specified by entity substitution for conve-
nience.

Snapshot of MUP at Work Figure 3 shows a
snapshot of MUP at work. A control window has
a list of available markup tags plus it shows which
source document elements are displayed or hidden,
while the source document text is in a separate
window. The style file controls the display of the
source document by selecting which elements and
attributes to show/hide, picking colors for highlight-
ing, and inserting some bracketing text before and
after. In the snapshot, we have elected to display
the data from the<date > tag, the<consult >

element with its attributes but not the data, and the
<tutor-resp > element and data with a separa-
tor after it, while suppressing all other elements. We
have shown the text “the blue box that lets you see if
the oil is flowing” being annotated as anindica-
tor via a pop-up dialogue.

Discussion

We believe a simplified easy-to-configure and run
tool will have wider applicability beyond our own
project. Other projects that manually code large
quantities of typed text, e.g. the RST dialogue
markup project (Marcu et al., 1999), have found
it desirable to create their own markup tools. The
CIRCSIM-Tutor project, with well over a hundred
transcripts of typed dialogue averaging an hour each,
has been coding in SGML (Freedman et al., 1998;
Kim, 1999) with general-purpose text editors.

The MATE workbench (McKelvie et al., 2001)
is a full-featured dialogue markup tool, however we
found it to be complex and difficult to use. We saw
an opportunity to borrow some of the ideas from
MATE and realize them with a simpler annotation
tool. MATE envisions three levels of user: coders,
researchers for whom the coding task is performed
and who need to view and manipulate the results,
and experts who are able to configure the software
(Carletta and Isard, 1999). It is this last group that
can perform the manipulations necessary for adding
new tags to the tag set and controlling how they
are displayed. MATE permits programmatic con-
trol over the coding interface by means of an XSL
style sheet customized for a particular application.
It is possible to split windows, intercept cursor op-
erations, provide linking operations between text in
different windows, and so on. This kind of flexibil-
ity is useful in annotated speech, for example in sep-
arately displaying and linking two speech streams
and having several related windows update simul-
taneously in response to coder actions. In our ex-
perience the MATE style sheets were quite difficult
to write and debug, and for our application we did
not need the flexibility, so we dispensed with them
and created our own, simpler, mechanism to control
the display of text. One consequence of the lessened
flexibility in MUP is that it presents a consistent cod-
ing interface using familiar single-dialog GUI con-
ventions.

Brooks (1975) estimates that the difference be-
tween a working program and a usable system with
ancillary utilities, shell scripts, etc. is three times the
original effort, and producing a distributable prod-
uct requires another factor of three effort. The core
MUP program works well enough that we have been
using it for several months. Our highest priority next
enhancement is to add a utility for inter-rater com-
parison, featuring some control over how parallel
annotations are compared (e.g., by selecting which
of the element’s attributes must match), and auto-
matically computing� statistics. MUP runs on So-
laris and Linux. We will make it available to re-
searchers as it matures.

Acknowledgments

This work is supported by grant N00014-00-1-0640 from the
ONR Cognitive, Neural and Biomolecular S&T Division and

<!ENTITY % indlist "(current-temp-gauge | sight-hole | water_temp_gauge ...)" >
<!ATTLIST indicator

id ID #required
idrefs IDREFS #required
comment CDATA #implied
indicator_name %indlist; ’unspecified’
directness (explicit | implicit | summary | unspecified) ’unspecified’
senseref (sense | reference | unspecified) ’unspecified’ >

Figure 2: Description ofindicator tag

Research Infrastructure grant EIA-9802090 from NSF. Thanks
also to Maarika Traat and Heena Raval, who have been most
helpful in the DIAG-NLP markup effort.

References

James Allen and Mark Core. 1997. Draft of
DAMSL: Dialog Act Markup in Several Lay-
ers. http://www.cs.rochester.edu/
research/cisd/resources/damsl/ .

Frederick P. Brooks. 1975.The Mythical Man-Month:
Essays on Software Engineering. Addison-Wesley,
Reading, MA.

Jean Carletta and Amy Isard. 1999. The MATE an-
notation workbench: User requirements. In Marilyn
Walker, editor,Towards Standards and Tools for Dis-
course Tagging: Proceedings of the Workshop, Col-
lege Park MD, pages 11–17, New Brunswick, NJ. As-
sociation for Computational Linguistics.

David Day, John Aberdeen, Lynette Hirschmann, Robyn
Kozierok, Patricia Robinson, and Marc Vilain. 1997.
Mixed-initiative development of language processing
systems. InFifth Conference on Applied Natural
Language Processing ANLP-97, pages 348–355, New
Brunswick, NJ. Association for Computational Lin-
guistics.

Barbara Di Eugenio, Michael Glass, and Michael J. Tro-
lio. 2002. The DIAG experiments: Natural language
generation for intelligent tutoring systems. InSecond
International Natural Language Generation Confer-
ence INLG ’02, Harriman, NY. To appear.

Giovanni Flammia and Victor Zue. 1995. Empirical
evaluation of human performance and agreement in
parsing discourse constituents in spoken dialogue. In
Proc. Eurospeech-95, Fourth European Conference on
Speech Communication and Technology, pages 1965–
1968.

Reva Freedman, Yujian Zhou, Jung Hee Kim, Michael
Glass, and Martha W. Evens. 1998. SGML-based
markup as a step toward improving knowledge acqui-
sition for text generation. InAAAI Spring Symposium

on Applying Machine Learning to Discourse Process-
ing, pages 114–117.

Ralph Grishman. 1995. Tipster phase II architecture
design document (Tinman architecture). Technical
report, New York University. http://cs.nyu.
edu/pub/nlp/tipster/152.ps .

Jung Hee Kim. 1999. A manual for SGML markup
of tutoring transcripts. Technical report, CIRCSIM-
Tutor Project, Illinois Institute of Technology.http:
//www.cs.iit.edu/˜circsim/ .

Daniel Marcu, Estibaliz Amorrortu, and Magdalena
Romera. 1999. Experiments in constructing a corpus
of discourse trees. In Marilyn Walker, editor,Towards
Standards and Tools for Discourse Tagging: Proceed-
ings of the Workshop, College Park MD, pages 48–57,
New Brunswick, NJ. Association for Computational
Linguistics.

Dave McKelvie, Amy Isard, Andreas Mengel,
Morten Braun Møller, Michael Grosse, and Mar-
ion Klein. 2001. The MATE workbench –
an annotation tool for XML coded speech cor-
pora. Speech Communication, 33(1–2):97–112.
http://www.cogsci.ed.ac.uk/˜dmck/
Papers/speechcomm00.ps .

Thomas Muhr. 2002. ATLAS.ti home page.http:
//www.atlasti.de/atlasneu.html .

Allen Munro. 1994. Authoring interactive graphical
models. In T. de Jong, D. M. Towne, and H. Spada,
editors,The Use of Computer Models for Explication,
Analysis and Experiential Learning. Springer Verlag.

QSR Corp. 2002. NUD*IST home page.http://
www.qsr.com.au/ .

Henry Thompson and David McKelvie. 1997. Hy-
perlink semantics for standoff markup of read-only
documents. In SGML Europe 97, Barcelona.
http://www.infoloom.com/gcaconfs/
WEB/TOC/barcelona97toc.HTM .

Douglas Towne. 1997. Approximate reasoning tech-
niques for intelligent diagnostic instruction.Interna-
tional Journal of AI in Education, 8:262–283.

< >

see if the oil is flowing. If it

--end resp--

problem.

is, you have solved the

to the oil burner view and click

To see if the oil is flowing, go

on the blue box that lets you

<consult prob="1" type="RU">

<tutor-resp id="t12_turn_3">

--end resp--

see if the oil is flowing properly

that was clogged. Check to

You have replaced the oil filter

<tutor-resp id="t12_turn_2">

<consult prob="2" type= ...>

Document

Tags

Markup

Style

./tlogs2001/t12.xml

./styles_master.

./mglass/t12a.xml

./tags.dtd

QUITSAVERUN

File Selections

Markup Tags

indication
indicator
operationality
ru
related
aggregate_object

consult
date
diag-data
log
tutor-resp

Source Document Tags

t12.xmlMUP Standoff Markup

indicator

Nice cross-modal referring exp

the blue box t...e oil is flowing

oil-flow-indicator

explicit

sense

comment

senseref

directness

indicator_name

indicator_20id

OK CANCEL REMOVE

Edit Markup Tag

< >

03/23/01 F 10:00

actionlog

Figure 3: MUP in Action: Control Panel, Text Window, and Edit Tag Window

