

Pydactyl: A Python Framework for Piano Fingering

David A. Randolph¹, Justin Badgerow², Christopher Raphael³ and Barbara Di Eugenio¹

Department of Computer Science, University of Illinois at Chicago ² Division of Music, Elizabethtown College

³ Department of Computer Science, Indiana University Bloomington

drando2@uic.edu

1. Overview

Object-oriented Python framework for rapid development of fingering models. Built on music21 [2] and standardizes

- Problem decomposition
- Data formats
- Fingering segmentation and re-combination
- **Evaluation methods**

Reference implementations of 3 published models [6, 4, 3].

2. Implementation

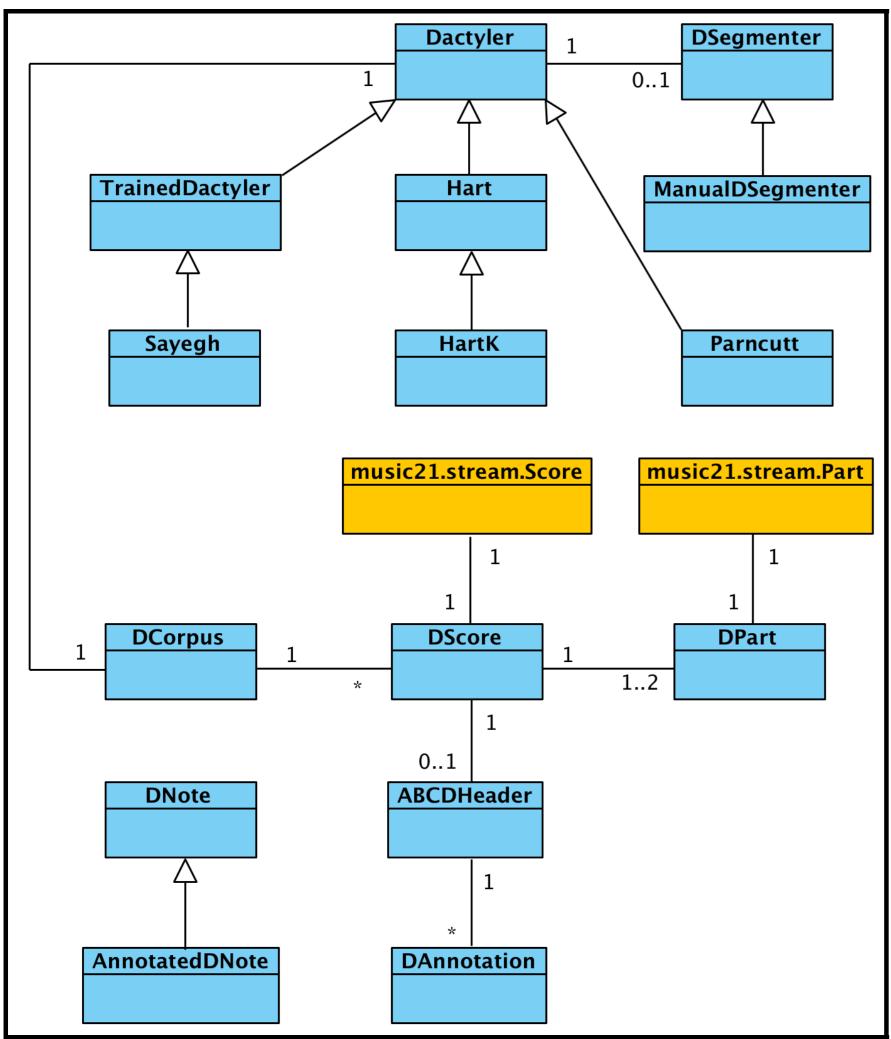


Figure 1: Pydactyl UML class diagram.

3. Evaluation Methods

Supports set of evaluation metrics to compare model output to gold-standard corpora:

- Pivot (mis-)alignment measure
- Standard Hamming distance
- A more "natural" weighted edit distance¹
- An edit distance detecting hand re-positioning and penalizing accordingly²

Figure 2: Alternative edit-distance measures. The distance between two fingers on ruler assessed for each deviation detected when comparing one suggested fingering to another. Credit: Hand by Baranovskiy [1].

Also, a novel "re-entry cost" measure, requiring multiple advice generations to assess a model:

- Check the alignment of two fingering sequences.
- At first deviation from gold standard,
 - Impose an edit-distance cost;
 - Re-generate advice on sub-sequence of notes from point of deviation, constraining first fingering to match gold standard;
- (c) Go to step 1 until all notes are processed.

All models in framework must support constraining first and last fingerings for any segment.

4. Example Use Case

- Experts enter data using updated, purpose-built web interface, abcDE [5].
 - Fingering specification
 - Phrase demarcation
- Experts generate standardized abcDF (version 6) content.
- Researchers load (training/evaluation) abcDF data.
- Researchers use Pydactyl for new fingering models:
 - Phrase segmentation
 - Segmented fingering recombination
 - Full underlying music21 functionality
 - Predefined intrinsic evaluation measures

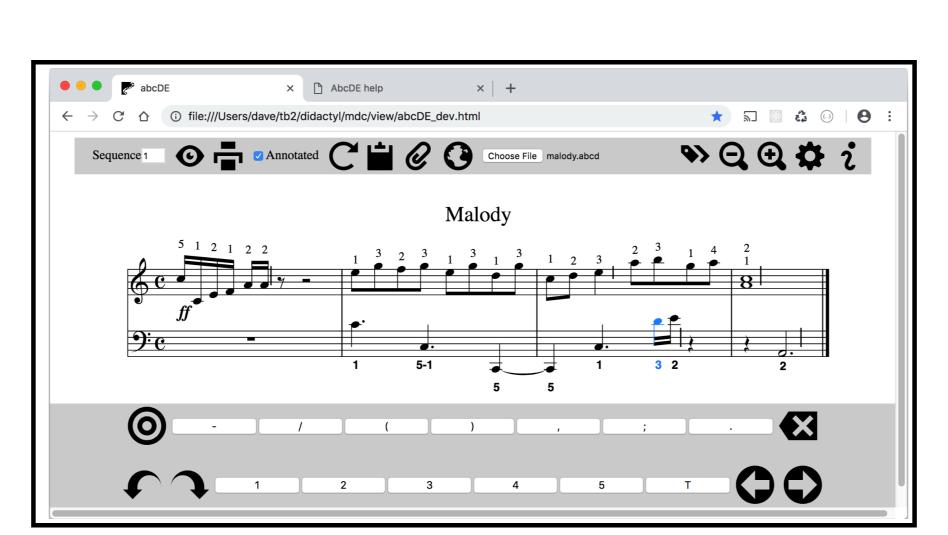


Figure 3: Screen capture of updated abcDE in action.

5. Revised abcD File Format

abcDE's native file format, "abcD," extends abc to augment an abc score with

- Fiingering details
- Data provenance
- Phrase segmentation (new!)

```
% abcDidactyl v6
% abcD fingering 1: 512122.13231313123;231412.@15-15
51;32.2.
% Authority: Joe Ivory (1847)
% Transcriber: David Bartleby
% Transcription date: 2018-08-21 12:49:02
% Joe Ivory is a mythical pianist.
% This is an example.
% abcDidactyl END
X:1
X:1
T:Malody
M:C
K:C
V:1 treble
!ff!c/C/E/F/ A/A/zz4|egfg egdg|cD'e2 abga|\
[Ac]8|]
V:2 bass
z8|C3C,3 C,,2-|C,,2 C,3 D/E/ z2|z2 A,,6|]
```

Listing 1: abcD file example.

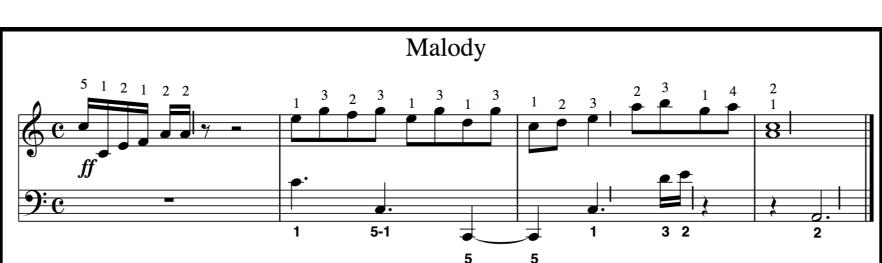


Figure 4: Rendered abcD file example with horizontal-line phrase markings, as specified in [7, §4.14].

6. Augmented abcDF Language

EBNF grammar, now including phrase demarcation as in Listing 2, allows parsing of abcD by abcDE and Pydactyl. ¹The "natural" measure penalizes each individual finger deviation by the absolute difference in the expected and actual fingering numbers.

sequence := staff ("@" staff)? staff := line "&" staff | line | "" line := (score_fingering) * score_fingering := ornamental ("/" ornamental)? (segmenter)? pedaled_fingering ("/" pedaled_fingering)? (segmenter)? pedaling ("/" pedaling)? (segmenter)? ornamental := "(" (pedaled_fingering) + ")" pedaling := (soft)? "x" (damper)? pedaled_fingering := (soft)? fingering (damper)? fingering := finger ("-" finger)? finger := (hand)? digit segmenter := "," | ";" | "."

Listing 2: Extended Bachus-Naur Form (EBNF) grammar defining the augmented abcDF format.

7. Example Usage

model = Parncutt(segmenter=ManualDSegmenter(), segment_combiner="cost") d_corpus = DCorpus(paths=["/tmp/malody.abcd"]) model.load_corpus(d_corpus=d_corpus) advice = model.advise() # Gold-standard embedded in input file. hamming_dists = model.evaluate_strike_distance()

Listing 3: Pydactyl usage example.

8. Deployment

Puydactyl source hosted at https://github.com/ dvdrndlph/pydactyl, To install, type

pip3 install pydactyl Example abcDE instance at http://dvdrndlph. github.io/didactyl/abcde/view/abcDE_dev.

All project code is open source and released under the terms of the MIT license.

9. Acknowledgments

This work has been supported by a Provost's Award from the University of Illinois at Chicago and a Faculty Grant from Elizabethtown College. Overdue thanks to Zoe Randolph.

References

- Baranovskiy. [1] Dmitry Hand. https:// thenounproject.com/DmitryBaranovskiy. Copyright information: CC-BY 3.0 license. Accessed: 2017-04-25.
- [2] Michael Scott Cuthbert and Christopher Ariza. music21: A toolkit for computer-aided musicology and symbolic music data. In Proceedings of the 11th International Society for Music Information Retrieval Conference, pages 637–642, 2010.
- [3] Melanie Hart, Robert Bosch, and Elbert Tsai. Finding Optimal Piano Fingerings. The UMAP Journal, 21(2):167–177, 2000.
- [4] Richard Parncutt, John A. Sloboda, Eric F. Clarke, Matti Raekallio, and Peter Desain. An ergonomic model of keyboard fingering for melodic fragments. Music Perception, 14(4):341–382, 1997.
- [5] David A. Randolph and Barbara Di Eugenio. Easy as abcDE: Piano fingering transcription online. In Extended Abstracts for the Late-Breaking Demo Session of the 17th ISMIR Conference, 2016.
- [6] Samir I. Sayegh. Fingering for string instruments with the optimum path paradigm. Computer Music Journal, 13(3):76–84, 1989.
- [7] Chris Walshaw. The abc Music Standard 2.1. http: //abcnotation.com/wiki/abc:standard:v2.1, 2011. Accessed: 2016-06-28.

²This "re-position penalizing" measure infers hand re-positioning from deviations involving the thumb and penalizes such differences more severely.