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Abstract. We are analyzing peer collaborations in order to build a com-
putational model of knowledge co-construction that could be useful in
creating an effective artificial peer learning agent. We hypothesize that
the start of a co-construction episode can be predicted based on initia-
tive during interactions and that shifts of initiative during interactions
indicate that co-construction is taking place. Since knowledge construc-
tion during collaboration is thought to be beneficial to individuals and
dyads, in this paper we show preliminary results indicating that initia-
tive and shifts of initiative are correlated with the learning gains and
task performance of individuals and of dyads.

1 Introduction

Peer tutoring and learning have been shown to strongly promote learning [1–
4]. Students working together have more frequent generation of new ideas and a
higher level of reasoning [5]. There are various theories as to why collaboration in
peer learning is effective, but one that is commonly referenced is co-construction
[6]. This theory is a derivative of constructivism which proposes that students
construct an understanding of a topic by interpreting new material in the context
of prior knowledge. Essentially, students who are active in the learning process
are more successful. Examples of co-constrution are a peer adding to or extending
a partner’s contribution or critically evaluating a partner’s input.

Peer learning agents attempt to embody notions of co-construction to various
degrees. Some take on the role of a companion instead of a more authoritative
tutor [7]. Some peer agents behave as coaches and monitor the student interac-
tion or provide help in problem solving [8]. Other peer learning agents act as
tutees which are taught or coached by a student [9–11]. Additional peer learning
agents encourage reciprocal tutoring and can play either the role of tutor or
tutee [12, 13]. However, while the agent can take on different roles in different
interactions, the role is fixed for the duration of the interaction.
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Our goal is an innovative peer agent that can switch roles during the inter-
action in order to encourage knowledge co-construction. Clearly, the agent must
be able to accurately identify when a student is engaged in co-construction. Ad-
ditionally, since a peer interaction can sometimes go awry [12, 14–17], in those
cases we would like the agent to put the interaction back on track without stifling
the possibility of co-constructive behavior returning later on in the interaction.
Hence, we also need to identify behaviors which tend to stifle co-construction,
so the peer agent can avoid them

Instances of co-construction appear to closely resemble two types of initiative
that the dialogue research community distinguishes between; dialogue initiative
and task initiative[18]. Dialogue initiative tracks who is leading the conversation
and determining the current conversational focus while task initiative tracks the
leader in the development of a plan to achieve a problem solving goal. Thus we
hypothesize that dialogue and task initiative will aid in predicting the beginning
of knowledge construction episodes and that shifts in who is taking initiative
will indicate that co-construction is taking place. Shifts in initiative show that
participants in the interaction are having the chance to both lead and criticize
or elaborate on an extension to the problem solving plan.

To explore these hypotheses, we analyzed a corpus of student collaborations
in which dyads are working on tasks that are meant to increase their under-
standing of computer science data structures. Data structures and their related
algorithms are one of the core components of computer science education and
a deep understanding of these topics is essential to a strong computer science
foundation.

The results of this analysis will be used to develop a computational model
that will be embedded in an artificial peer learning agent. We have begun work
on the agent, with the development of an interface and a student model that
will track the current state of problem solving as well as estimate the student’s
knowledge of concepts involved in solving the problem.

In this paper we present our data collection and an analysis of initiative’s
impact on successful collaboration and learning. We conclude with a discussion
of future work.

2 Data Collection

To test our hypothesis about the relationship between initiative and knowledge
co-construction during peer collaborations, we analyzed a corpus of interactions
between 15 student dyads working together via a computer mediated interface
to solve five data structure problems. The data structures that we are focusing
on are (1) linked lists, a set of data nodes connected by pointers (see example in
Fig. 1 drawing), (2) stacks, array-based last-in first-out structures and (3) binary
search trees, a data structure where each node connects to at most two other
nodes and whose ordering property makes it very efficient for retrieving data. The
participants in these interactions were undergraduate computer science students
who were taking or had taken at least one course in data structures. The prob-
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lems presented to the students required them to analyze and potentially correct
code segments involving data structures. The computer-mediated interface was
designed after first observing face-to-face interactions of students solving these
problems. Because the students used other communicative channels in addition
to dialogue, such as drawing diagrams, the interface consists of four distinct
areas (see Figure 1):

1. Problem display: Presents the problem that the students are to solve.
2. Code display: Displays the code from the problem statement. Additionally,

the students are able to make changes to the code, such as crossing-out lines
and inserting lines, as well as undoing these corrections.

3. Chat Area: Allows for user input and an interleaved dialogue history of both
students participating in the problem solving. This area functions similarly
to an instant messaging application.

4. Drawing area: Here users can diagram data structures to aid in the expla-
nation of parts of the problem being solved. The drawing area has objects
representing nodes and links. These objects can be placed in the drawing
area to build lists, stacks or trees depending on the type of problem being
solved. Such diagraming is widely used in data structure courses, so students
are familiar with the concept of building data structures using such objects.

The changes made in the shared workspace (drawing and code areas) are logged
and propagated to the partner’s window. This gives the users the ability to
communicate not only verbally but also via graphical actions.

Before and after their collaborative problem solving interactions, each stu-
dent was individually given a test consisting of ten data structure problems,
similar to the problems presented to them during collaborative problem solving.
On completion of the pre-test, the students were given a short tutorial on the
interface and then seated at computers in separate rooms. Each pair was given
five problems to solve using the computer-mediated interface. Problems 1, 2 and
3 involved linked list data structures, while problem 4 was a stack problem and
problem 5 related to binary search trees. The initial exercise let the users become
acquainted with the interface. They were allowed to ask questions regarding the
interface and were limited to 30 minutes to solve the problem. The remaining
exercises had no time limits, however the total session, including the pre-test
and post-test could not exceed three hours. When solving the problems, the par-
ticipants interacted via the computer interface through typed natural language
utterances and through actions in the shared workspace as shown in the tran-
script sample (see Figure 2). In this transcript the dyad is working on problem
1. After discussing a misconception of C’s, in 14:03:40 C begins to illustrate the
effect of the first line of code in the code sample given to the pair. First a pointer
variable is added to the drawing and then in 14:03:47 that variable is made to
point at a node in the drawing.

Given the time constraint, not all pairs completed all five problems. Thus we
have a corpus of 69 problem solving dialogues.
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Fig. 1. The data collection interface

3 Data Analysis

A paired t-test of pre- and post-test scores showed that students did learn during
collaborative problem solving (t(30)=2.83; p=0.007). Additionally the interac-
tions produced an average normalized learning gain of 17.5.

We then performed an initial analysis on three of the exercises (problems
3, 4 and 5) to identify features that positively impacted learning and problem
solving. Since both chat and shared workspace actions were logged for each user,
we were able to automatically extract the following features for each exercise (in
parentheses we list the labels we will use in reporting results in tables):

– Total number of turns (total turns)
– Drawing turns (drawing turns)
– Actual drawing turns that exclude those that only rearranged the drawing

(actual drawing turns)
– Code turns (code turns)
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14:01:56 C: unless the "first" is just a dummy node

14:02:20 D: i don’t think so because it isn’t depicted

as a node in the diagram

14:02:28 C: OK

14:03:13 C: so you would draw something like...

14:03:24 D: i believe it will make the list go like this:

bat, ant, cat

14:03:40 C: draw: add pointer second (n100)

14:03:44 C: draw: move n100

14:03:46 C: draw: link n100 to null

14:03:47 C: draw: link n100 to n002

Fig. 2. An excerpt from one of the interactions

– Time spent on graphical actions (time on graphical actions)
– Total number of words (words)
– Words per turn (words per turn)
– Total problem solving time (total time)

Additionally, all pairs received a score on the solutions that they submitted
(problem score). For each problem completed, a pair could earn a maximum of
five points based on the correctness and completeness of their solution. Since
each pair was presented with 5 problems, they could earn a total of 25 points.

Linear regression analysis revealed significant correlations and trends toward
correlations between some of these features and learning and successful problem
solving (see Table 1 and Table 2). In problems 3 there is a trend toward corre-
lation of drawing with both post-test score and problem score and in problem 4
there is a correlation with problem score. This suggests that use of the graphical
workspace was beneficial to the students. The remaining correlations and trends
to correlation also suggest that participation in general is an important factor
in collaborative learning and problem solving.

Table 1. Post-test Score Predictors (R2)

Problem 3 Problem 4 Problem 5
Predictor (Lists) (Stacks) (Trees)

Pre-Test 0.336 (p=0.001) 0.657 (p=0.000) 0.663 (p=0.000)

Words 0.189 (p=0.021)

Words per Turn 0.141 (p=0.049)

Time on graphical actions 0.154 (p=0.039)

Problem Score 0.315 (p=0.002)

Total Turns 0.108 (p=0.088)

Actual Drawing Turn 0.105 (p=0.092)

Code Turns 0.136 (p=0.076)



6 Kersey et al.

Table 2. Problem Score Predictors (R2)

Problem 3 Problem 4 Problem 5
Predictor (Lists) (Stacks) (Trees)

Pre-Test 0.334 (p=0.001) 0.214 (p=0.017) 0.269 (p=0.009)

Total Time 0.186 (p=0.022) 0.125 (p=0.076) 0.129 (p=0.085)

Total Turns 0.129 (p=0.061) 0.134 (p=0.065)

Drawing Turns 0.116 (p=0.076) 0.122 (p=0.080)

Actual Drawing Turns 0.124 (p=0.078)

Draws 0.159 (p=0.054)

Code Turns 0.130 (p=0.071)

Our analysis of these basic, easily extractable features shows that there is
some correlation between participation and our measures of successful collabo-
ration (post-test score and problem score) and justifies doing a deeper analysis
of the collaborations. We chose to annotate for initiative because we believe
that it can aid in the identification of knowledge co-construction episodes. In-
tuitively, initiative would switch between peers when they are working together
to construct a solution and solve the problem. Since there are various types and
definitions for initiative [18–23], we chose to annotate for two different types.

First, the dialogues were annotated for dialogue initiative, which tracks con-
trol over the conversation, using Walker and Whittaker’s utterance based rules
for attributing control [23]. In this scheme, each turn in the dialogue must first be
tagged as either: (1) an assertion, (2) a command, (3) a question or (4) a prompt
(a turn not expressing propositional content). Control is then attributed using
rules based on the turn type. Since these rules only include dialogue actions,
graphical actions were excluded from this annotation.

Annotation for task initiative included graphical actions as well as chat ac-
tions. We define task initiative as taking the lead in problem solving activities.
Actions in our domain that show task initiative include:

– Suggesting a section of code to verify.
– Explaining what a section of code does.
– Identifying that a section of code as correct or incorrect.
– Suggesting a correction to a section of code
– Making a correction to a section of code prior to discussion with the other

participant.

Two coders, one of the authors and an outside annotator, have coded 24
dialogues (1449 utterances) for both types of initiative. This is approximately
45% of the corpus. The resulting intercoder reliability, measured with the Kappa
statistic[24] (shown in table 3) is high enough to support tentative conclusions.

To determine if initiative has a correlation with learning, multiple linear
regressions were run with post-test score as the predicted variable. Predictor
variables include the students’ prior knowledge (pre-test score), the number of
turns that a student had initiative and the number of initiative switches be-
tween the participants. Separate regressions were run for each of the problem
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Table 3. Kappa Values for Initiative Annotation

Dialogue Initiative Task Initiative

Kappa 0.77 0.68

types: list (problems 2 and 3), stack(problem 4) and trees (problem 5) as well as
combinations of the different problem types. Problem 1 was excluded from the
analysis since its purpose was to let the participants become familiar with the
interface.

In the list problems, we found that there was a significant correlation between
post-test score (after removing the effects of pre-test scores) and the number of
switches in dialogue initiative (R2=0.157, p=0.014). Also, as shown in table 4,
there was also a correlation between post-test score and the number of turns
that a student had initiative. This suggests that learning increases when stu-
dents often take the initiative and also when they take turns leading problem
solving. Additionally, multiple regressions were run using problem solving suc-
cess (problem score) as the predicted variable. Predictor variables were the same
as for the other regression analyses, except since problem score is for a dyad,
prior knowledge is measured as the higher of the pairs’ pre-test scores. For list
and stack problems combined, after regressing out the maximum pre-test score,
the number of task initiative switches correlates with problem score(R2=0.257,
p=0.052).

Table 4. Multiple Regression Results

Problems Predicted Variable Predictor Variable R2 β p

2-3 Post-test Score Pre-test Score 0.324 0.559 0.001
Dialogue Initiative Switches 0.157 0.382 0.014

2-3 Post-test Score Pre-Test Score 0.345 0.596 0.001
Dialogue Initiative Turns 0.077 0.294 0.065

2-4 Problem Score Maximum Pre-test Score 0.407 0.563 0.024
Task Initiative Switches 0.257 0.410 0.052

Several factors potentially play into the fact that not all problem types
showed a correlation of initiative features with measures of successful collab-
oration. First, the lack of correlations in the tree problem is possibly caused
by the wide variation in experience levels of the students. Of the pairs that
solved the tree problem, only 33% had both members receiving an acceptable
score (more than 60% of the possible points) on the tree related problems in the
pre-test. This contrasts with 58% for the list problems and 68% for the stack
problems. And secondly, since the students had a better understanding of stacks
prior to problem solving, there was less discussion in solving the stack problems.
Additionally, our experience in teaching data structures in the classroom is that
students struggle more with the concepts related to linked lists than with those
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involved in understanding stacks. So, a better overall understanding of stacks is
a possible cause of the lack of correlation of dialogue initiative with post-test
score in the stack problems.

Based on these results, our next steps will be to test whether knowledge co-
construction correlates with initiative and initiative shifts and to build a model
to identify initiative automatically.

4 Current and Future Work

One issue we have not settled on yet is whether initiative, as we have coded so far,
is sufficient to identify co-construction. Intuitively it is not, and one would want
more sophisticated and telling predictors. However, we must take into account
the difficulty of recognizing such predictors while keeping in mind our ultimate
goal of having a software agent recognize them.

For example, we have started annotating for relations that could potentially
identify knowledge construction. In an initial attempt, two coders have annotated
a subset of the dialogues for the following relations:

– criticize: a student critically evaluates her peer’s input
– elaborate: a student adds additional information to the topic under discus-

sion
– justify: a student adds support to a statement made by a peer
– summarize: a student recaps the discussion related to a segment of code

The resulting intercoder reliability for these relations is not good (see Table
5). These values reflect the difficulties that humans have in identifying such
relations. While we are trying to improve this annotation, we are also asking
whether it is worth pursuing or whether we can use initiative annotation alone
since we have found initiative to be much easier to identify. As shown in Tables
3 and 5, with the exception of the justification relation, dialogue initiative and
task initiative have greater inter-coder reliability. A correlation with initiative
would make co-construction episodes easier to identify.

Table 5. Kappa Values for Co-Construction Relations

Criticize Elaborate Justify Summarize

Kappa 0.5 0.13 0.75 0.20

Given our hypothesis that initiative can at a minimum aid in the identifica-
tion of co-construction, initial work has begun on creating a model to automat-
ically identify initiative based on easily attainable features of the interactions.
We are currently exploring various machine learning algorithms. Since this is
a classification problem, we will investigate classifiers, such as Decision Trees
and Classification Based on Associations[25]. However, those algorithms might
not capture the sequential nature of dialogue, so algorithms such as as hidden
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Markov models or neural networks that take into account the sequence of actions
might be a better fit to our data.

Once our model is developed, it will be implemented as an artificial agent,
KSC-PaL, that interacts with a peer in collaborative problem solving using an
interface similar to the one that was used in data collection (see Figure 1).
This agent will be an extension of the TuTalk system, which is designed to
support natural language dialogues for educational applications [26]. Such an
agent would be used to augment in-class instruction by providing students with
the opportunity to solve additional problems with the help of a ”peer”.

5 Conclusion

In this paper we’ve presented our intial steps toward creating a model that
can successfully recognize co-construction and the lack thereof. Because we ex-
pect knowledge construction to be beneficial to learning and problem solving, we
tested whether initiative, which is defined similarly to knowledge co-construction
but simpler to recognize, is correlated with learning and task performance and
found that it is. Our next step is to annotate directly for co-construction episodes
and check that they are correlated with initiative. A model that can recognize
initiative could be used to intervene when a student collaborator is not engag-
ing in co-construction. Such a model will be embedded in an agent that would
interact with users using both typed natural language dialogue and actions in a
graphical workspace.
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