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Abstract

We present a method for aggregating information from an in-
ternal, machine representation and building a text structure
that allows us to express aggregations in natural language.
Features of the knowledge representation system, a semantic
network, allow us to produce an initial aggregation based on
domain information and the competing aggregate structures.
In the £nal stages of realization, the network representation
allows us to use low-level (below the level of a clause) in-
formation to perform linguistic aggregation. The test bed for
this work is an interactive tutoring system on home heating
systems.

Introduction
When speaking or writing, people display a remarkable abil-
ity to avoid duplicating information that they have already
presented, or that is directly inferable from what they have
said. In natural language generation systems,aggregation
organizes text content according to common features and
concepts to avoid redundancy in dialogue.

The machine-generated dialogue in Figure 1 motivates the
need for aggregation. The output is produced by an interac-
tive tutoring system (ITS) built using the VIVIDS/DIAG-
based framework. The system tutors students about repair-
ing a home heating system. This output is produced in re-
sponse to a query about why the furnace igniter continues
to ignite in the heating system’s start up mode. The user in-
teracts with the tutoring system by clicking on the graphic
display corresponding to the £re door to the furnace. In its
response, the ITS nominalizes this action as the “visual com-
bustion check indicator”.

One simple way to make the text more understandable is
to order the sentences according to units that always, some-
times, or never produce the abnormality. This would group
sentence 8 with 2-4. However, the redundancy in sentences
2-8 still makes the text dif£cult to understand. If spoken, the
text becomes nearly incomprehensible. Good aggregation is
critical in human dialogue systems.

There are several issues in regard to producing appropri-
ate aggregations. One is choosing an ontology that facili-
tates aggregating features of the content. For example, the

Copyright c© 2002, American Association for Arti£cial Intelli-
gence (www.aaai.org). All rights reserved.

1 The Visual combustion check is igniting
which is abnormal in this startup mode
(normal is combusting).

2 Oil Nozzle always produces this abnormal-
ity when it fails.

3 Oil Supply valve always produces this ab-
normality when it fails.

4 Oil Pump always produces this abnormality
when it fails.

5 Oil Filter always produces this abnormal-
ity when it fails.

6 System Control Module sometimes produces
this abnormality when it fails.

7 Igniter assembly never produces this ab-
normality when it fails.

8 Burner Motor always produces this abnor-
mality when it fails.

Figure 1: A response from a VIVIDS/DIAG tutor in the
home heating system domain

illustration in Figure 1 makes it clear that we could aggre-
gate on the level of certainty with which a failed unit causes
the abnormal visual combustion check. But what is not
clear from the dialogue is that the units mentioned could be
grouped according to the heating subsystem that they belong
to: the oil burner or the furnace.

We can also aggregate the text based on features that are
not domain related. For example, aggregation on the lexical
level might be appropriate. In Figure 1, several of the units
have names that are modi£ed by the word “oil” (by virtue of
being part of the oil burner). This might compel us to aggre-
gate these names into a single phrase – “oil nozzle, supply
valve, pump, and £lter” if enough units fall into the same ag-
gregate group. Another consideration is the branching fac-
tor of an aggregation. If we aggregate on the certainty with
which a failed unit causes the abnormality, there are three
attribute values all with units in them: always, sometimes,
and never. However, there are only two aggregate values if
we aggregate on heating subsystem: furnace and oil burner.
The state of the discourse might also make one aggregation
preferable to another. For example, if the conversational fo-
cus is on the furnace, it might be appropriate to present all
information about the furnace at once. This dictates aggre-
gating on subsystem. As (Reiter & Dale 1997) points out,
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Figure 2: System Con£guration

one of the most dif£cult problems with aggregation is decid-
ing on which among the numerous potential (and possibly
con¤icting) aggregations to perform.

In the next section, we describe the relevant architecture
of our system and pertinent features of the the knowledge
representation system and generation tool that we have inte-
grated. Then, we work through the example above to show
what our system produces and why. We conclude with a
discussion of our work to date and future work.

System Overview
DIAG is a shell to build ITSs that teach students to trou-
ble shoot systems such as home heating and circuitry(Towne
1997a; 1997b). DIAG builds on the VIVIDS authoring en-
vironment, a tool for building interactive graphical models
of complex systems(Munro 1994). A typical session with a
DIAG application presents the student with a series of trou-
bleshooting problems of increasing dif£culty. At any point,
the student can consult the built-in tutor in one of several
ways. For example, if the student is unsure what the reported
status of a system indicator means, she can consult the tutor
about it. Figure 1 is an example of the original DIAG sys-
tem’s output in a case like this. After selecting content, the
original DIAG uses simple templates to assemble the text to
present to the student. The result is that DIAG’s feedback is
repetitive. Furthermore, this problem is compounded by the
fact that DIAG applications involve complex domains with
many parts that DIAG might need to report on in a single
response.

Figure 2 shows the basic con£guration of subsystems that
we use to interface to a VIVIDS/DIAG tutor. Solid lines
indicate control ¤ow, and dashed lines indicate communica-
tion and data ¤ow. A JavaClient establishes a TCP/IP
connection to the VIVIDS/DIAG tutor, listens to the tutor,
and intercepts the content of each tutor response. The tu-
tor’s representation of the content is impoverished, so the
Client interfaces to the Semantic Knowledge Representa-
tion and Reasoning System (SNePS) to represent the content
of the tutor’s response in a semantic network.

SNePS is a semantic network knowledge representation
and reasoning system with a logic that targets natural lan-
guage understanding and commonsense reasoning(Shapiro
2000). A SNePS network is said to bepropositional, be-
cause all propositions in the network are represented by
nodes. In SNePS, there arenodesand labeled, directed
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Figure 3: SNePS Network for: Ifm39 [b2 is inoperative],
thenm41 [m39 generates (causes)m34! (b10 igniting in
startup mode) with certaintyalways ]

edges calledarcs. All nodes represent concepts, either ob-
jects or propositional concepts. When information is added
to the network, it is added as a node with arcs emanating
from it to other nodes. A SNePS feature that aids linguis-
tic aggregation is that each concept in the network is rep-
resented by a unique node. This is called theUniqueness
Principle.

Figure 3 shows an example of SNePS network that is
constructed to make part of the response in our example.
SNePS-2.5 uses an assertion ¤ag (represented with a !) to
distinguish what is asserted as true from other propositions.
m42! is a rule that asserts that ifm39 (ANT= antecedent)
thenm41 (CQ= consequent).m39 is the proposition that
objectb2 is inoperative, andm41 is the proposition that the
situation represented bym39 always causesm34! . m34!
asserts that objectb10 is igniting in startup mode. In sum-
mary, m42! asserts that ifb2 is inoperative, then its fail-
ure always causesb10 to ignite in startup mode. Another
network segmentm4! asserts thatb2 is called aoil-
nozzle . While m4! , m42! and m34! are asserted as
true, propositionsm39 and41 are not asserted, indicating
that they are not known to be true. The semantic network is
loaded apriori with static information about the home heat-
ing system, for example, that the oil-nozzle is a compo-
nent of the oil burner. Then transitory information (infor-
mation for the speci£c response like Figure 3) is added by
theClient .

TheClient invokes a JavaTextStructurer to build
a text structure of rhetorical relations based onRhetorical
Structure Theory(RST) (Mann & Thompson 1988). Each
rhetorical relation has at least onenucleus, the core idea to
be communicated. A nucleus can be augmented with asatel-
lite, a clause that is related to the nucleus but is not required.
According to RST, the communication of the satellite in ad-
dition to the nucleus also communicates to the listener the
relationship between the satellite and the nucleus. Figure 4
shows a rhetorical relation built from the SNePS network in
Figure 3. The nucleus is at the arrow head,m41, and the
satellite ism39. The arrow going fromm39 to m41 indi-
cates that, as a satellite,m39 is a condition form41. The
TextStructurer queries the SNePS network to build
the text structure starting with a nucleus, in this casem41.



CONDITION

m39 m41

Figure 4: Text structure built usingm39andm41 in Figure
3

In this example, theTextStructurer applies a rule that
states that:

Given anucleus,
if there is a node in the network that is

NOT asserted and that
is an antecedent to the nucleus

then
the node is asatelliteto thenucleus
in the CONDITION relationship

The actual query looks for aANT-CQarc relationship be-
tween an unasserted node in the network and nucleusm41.
Nodem42! expresses this relationship, andm39 is added to
the text structure as a satellite in a CONDITION rhetorical
relationship. When this text structure is traversed by the sur-
face generator, it can be used to determine a linear ordering
of the information in these nodes and to add cue phrases to
the text. For example, Figure 4 could be realized as “ifm39
thenm41” or “ m41wheneverm39”.

TheTextStructurer makes repeated queries until no
new text structure can be built. Then theTextStruc-
turer invokes theSurfaceGenerator to realize the
complete text structure in natural language. Since the nu-
clei and satellites in the text structure are SNePS nodes, the
SurfaceGenerator also queries the network to build a
linearization. TheTextStructurer and theSurface-
Generator are written using Exemplars, a object-oriented
framework for building generation grammars that allow for
mixing template-style processing with more sophisticated
text planning (White & Caldwell 1998).

An Example
When the user asks the VIVIDS/DIAG tutor about the vi-
sual combustion check indicator, theClient receives a set
of records. The initial record shows that the user wishes
to consult the tutor about a heating system indicator, the
visual combustion check indicator. The records that fol-
low are about units that could be replaced (called “replace-
able units” or RUs) and the certainty with which each RU
causes the abnormal indication. After adding the infor-
mation to the SNePS network, theClient invokes the
TextStructurer with the values"ConsultIndica-
tor" and"visual combustion check" .

TheClient does not pass theTextStructurer any
content for the response. TheTextStructurer is passed
the task to perform: building a response that consults the
user on the visual combustion check indicator. As discussed,
different aggregation issues become important at different
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Figure 5: (a):Aggregation by system then certainty and
(b): Aggregation by certainty then system

stages of building the text structure. Therefore, we let the
TextStructurer select content as it builds and re£nes
the text structure.

At the £rst stage, theTextStructurer queries the
SNePS network for the initial state of the visual combus-
tion check indicator and all assertions in the network about
what could contribute to this state. This results in a query
that returns nodes likem42! in Figure 3. We will refer to
the set of nodes likem42! as thecertainty statements. At
this point in our work, theTextStructurer always ag-
gregates certainty statements on two dimensions:1 (1) the
subsystem of the heating system that each RU belongs to
and 2) the certainty with which an RU failure can cause the
indicator abnormality. We refer to these as thesystemand
certaintyaggregation dimensions. TheTextStructurer
aggregates the certainty statements on (a) system, and within
each system, on certainty. It also aggregates them on (b) cer-
tainty, and within each level of certainty, by system. Figure
5 shows the twoAggregation objects. Currently, we se-
lect the aggregation with the smaller initial branching fac-
tor. Since the system dimension has only two values, the
TextStructurer selects aggregation (a)in Figure 5 to
use as the initial nuclear content of the text structure.

Next, theAggregation structure is mapped to appro-
priate rhetorical relations to make a text structure. The £rst
aggregation dimension is by system, and it has two values:
asserted nodesm20! and m15! . Space does not permit
showing these nodes. However,m20! asserts that the RU
mentioned in certainty statementm55! is a component of
the furnace system, andm15! asserts that all the RUs men-
tioned in certainty statementsm59! , m62! , m51! , m48! ,
m45! , andm42! are components of the oil burner. This
division is based on an arbitrary (from a language point
of view) division of the heating system into units. There-
fore, no rhetorical relationship exists betweenm20! and

1However, we are not limited to two dimensions. We can ag-
gregate over any number of dimensions.
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m15! and they are mapped to the onlynon-relationin RST:
JOINT.

The nodes in the sub-aggregation underm15! are aggre-
gated by scalar values “always”, “sometimes”, and “never”.
At this point in our work, this aggregation is also realized
with a JOINT. TheTextStructurer builds the initial
text structure shown in Figure 6. Notice that each JOINT
relation is associated with a node, for example,

JOINT: ½¼
¾»
m15!

Nodem15! is an assertion about all the nodes in the JOINT:
m59! , m62! , m51! , m48! , m45! and m42! . Namely,
m15! asserts that an argument to each node in this group is
a unit of the oil burner assembly.

The top-level JOINT is not associated with a node. This
JOINT represents the initial aggregation, based on no rep-
resented knowledge, and only the branching factor of the
aggregation. The only effect that the top-level JOINT re-
lation will have is to make sure that the information under
the JOINT labelledm20! and the information under the
JOINT labelledm15! are presented as parallel text struc-
tures. Similarly, the JOINT labelled withm15! ensures
that parallel text structures will be used for the content of
nodem59! and the third-tier JOINT labelled with the base
node,always . Since this node is not an assertion (or least a
propositional node), there is no way to express what the £ve
certainty statements have in common in this JOINT, namely,
that these are all assertions about units thatalways cause
the abnormality being discussed.

Expanding the Structure
The TextStructurer expands the text structure in 6
with satellites. Figure 7 shows this expansion. In our exam-
ple the top-level, multi-nuclear JOINT is augmented using a
non-volitional result relation (NVRESULT) to add the satel-
lite m34! . This will in turn be augmented withm36! as a
satellite using an ELABORATION relation.

Structuring Within
TheTextStructurer uses a second process to structure
text that we callstructuring within. Structuring within be-
comes necessary because the initial aggregation can contain
clauses that are about other clauses. The SNePs logic is not
strictly £rst-order. SNePS nodes can and often do represent

m20! m15!

JOINT

...m34!m36!

ELABORATION

NVRESULT

Figure 7: The text structure with satellites added
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Figure 8: Figure 6 after structuring within

propositions about other propositions. So that we can aggre-
gate over any content, we must be able to structure content
internally that is already part of an overarching text struc-
ture. As an example of structuring within, we use node
m42! in Figure 3. Structuring within will replacem42!
with a text structure in which the antecedent ofm42! (node
m39) becomes the satellite to the consequent ofm42! (node
m41) in a CONDITION rhetorical relation. The new text
structure is given in Figure 4. All the certainty statements
can be structured within similarly, replacing each with a
CONDITION rhetorical relation. As a result, the text struc-
ture in Figure 6 is replaced with Figure 8.

If the text structure in Figures 7 and 8 were realized using
only templates, the output would be

1 A visual combustion check indicator is
igniting in startup mode.

2 The visual combustion check indicator ig-
niting in startup mode is abnormal.

3 Within the furnace system, this is sometimes caused
when the system control module is inopera-
tive.

4 Within the oil burner, this is never caused when
an igniter-assembly replaceable-unit is
inoperative.

5 This is always caused when a burner motor
is inoperative.

6 This is always caused when an oil filter
replaceable unit is inoperative.

7 This is always caused when an oil pump
replaceable unit is inoperative.

8 This is always caused when an oil supply
valve replaceable unit is inoperative.

9 This is always caused when an oil nozzle
replaceable unit is inoperative.

The italicized phrases are the contribution of the asser-
tions represented by nodesm20! andm15! . The repeated
use of “this” is a reference to nodem34! which represents
the visual combustion check indicator igniting in startup
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Exploiting Structure Sharing
Domain-level information (as represented by propositions)
cannot address the redundancy when the third-tier JOINT
(lines 5–9) is realized. At this point, the basis for aggrega-
tion is below the clause level. This problem exists at some
point in any ontology that is used.

We address the problem by exploiting the set logic of
SNePS to perform aggregations on the basis of shared net-
work structure at a representational level below the clause.
Figure 9 shows two of the £ve certainty statements in the
original third-tier JOINT (nodesm42! and m62! ) and
the antecedent and consequent of each of them (nodesm39,
m41, m60, andm61 – shaded). The two antecedents,m39
and m60, share nodem38 in the same relationship (the
PROPERTYrelationship). Nodem38 represents the lexical-
ization of “inoperative”. The two consequentsm41andm61
share nodem40 andm34! in the same relationships, as a
certainty and a generated cause respectively.m40represents
the lexicalization of “always”.m34! represents that the vi-
sual combustion check is igniting in startup mode. All the
antecedents in Figure 8 sharem38, and all the consequents
sharem34! andm40.

During surface realization, network queries return shared
nodes when all the antecedent nodes are used as a set
argument in the query. Nodes likem38 are returned.
Similarly, we query the network for information about the
set of consequents and returnm40andm34! . These shared
structures are realized once. Hencem34! , one of the two
nodes shared by the consequents in the generates relation is
expressed as “this is .... caused”. Together with the other
shared node,m40, the consequents are collectively realized
as “this is always caused”. Similarly, the node shared
among the antecedents,m38, is expressed once as “... is
inoperative”. Since the unit names do not share structure,
they are enumerated. As a result of structure sharing, we
generate the the following aggregation in place of lines 5-9
above.

5 This is always caused when a burner
motor, oil filter, oil pump, oil sup-
ply valve, or oil nozzle replaceable
unit is inoperative.

Discussion and Future Work
Semantic networks have capabilities similar to a relational
database. In addition, they have great representational
power. We have exploited these features to generate ag-
gregations in natural language. As our example illustrates,
the network allows us to aggregate based on domain in-
formation, for example, system and certainty. We can
also aggregate based on domain-independent features. The
antecedent-consequent relation is an example of this. Fur-
thermore, during surface realization, shared structure is used
to aggregate the text below the clause level.

We are currently expanding the system in preparation for
testing and evaluation with human subjects. In future work,
we want to automatically determine aggregation dimensions
from a set of nodes that are to be aggregated. We will also
consider the state of the discourse in choosing and ordering
aggregation dimensions.
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