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Abstract

Many conferences in AI and NLP call
for long and short papers; and satellite
workshops co-locate with the main con-
ference. In this work, we focus on dis-
tinguishing full from short from workshop
papers, as submitted to some recent ACL
conferences. We propose a framework that
takes into account both metadata and con-
tent of the paper. To extract metadata,
we devised a full-fledged paper parser.
SVM models outperform the only previ-
ously published results by at least 3.6%
as concerns distinguishing full from work-
shop papers. Metadata (number of ta-
bles/formulas), syntactic feature (syntactic
complexity) and term TF-IDF score distin-
guish full from short papers, whereas the
topic also distinguishes full from work-
shop papers.

1 Introduction

When preparing a paper for a conference, its au-
thors often wonder whether the work is better
suited for a full or a short paper; or whether it
should be submitted to one of the attendant work-
shops. Especially less experienced authors often
refer to more experienced ones, such as their ad-
visors, to help answer this question. This paper
studies the following two problems: (1) Which
features of papers, if any, correlate with different
kinds of papers at ACL? (2) Assuming that full
papers carry more prestige, to what extent can an
automatic program assess whether a potential sub-
mission reaches full paper quality?

The first contribution of Automatic Assessor
(ACL-AA), the system we propose, is a full-
fledged paper parser that extracts both metadata
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and content from the paper. The second contri-
bution is the features that range from metadata,
such as the number of formulas or of tables, to
paper content, to contextual features, such as the
prominence of its authors, or the popularity of cer-
tain techniques. After generating the features, we
use supervised learning (SVMs). Different mod-
els are built corresponding to different assessment
tasks; we use 10-fold cross-validation to select the
best combination of features and tune parameters
for the corresponding models. Our evaluation on
testing data set shows that the approach we pro-
pose always outperforms baseline or previously
published results, whatever is available, by at least
18.9% when distinguishing full from short papers,
and by more than 3.6% when distinguishing full
from long workshop papers. We obtain better re-
sults than (Bergsma et al., 2012), the only previous
paper we know of that addresses this task. Com-
plexity of sentences, metadata like number of for-
mulas per page and TF-IDF score of paper abstract
terms are useful to differentiate full from short pa-
pers. When distinguishing full from workshop pa-
pers, the topic of the paper, together with its meta-
data, TF-IDF score and sentence complexity are
the most predictive features, sometimes together
with the prominence of authors and the popularity
of certain techniques.

Motivations are two-fold. First, our work will
be the core of an automatic reviewer system, sim-
ilar in spirit to automatic graders, e.g. (Burstein
et al., 2003). It would support both reviewers and
authors, the former in assessing novelty, relevance
etc. of papers, the latter in preparing better papers
to start with. It could also support professional
societies interested in investigating features of the
review process, including potential bias (see our
RANK feature). Second, computational stylome-
try is a novel area of research, which “aims to re-
cover useful attributes of documents from the style
of the writing” (Bergsma et al., 2012). It can sup-



port linguistic or sociological analysis of a body of
literature, including insight into collaborations.

The potential applicability of our work does not
simply concern helping authors decide which sort
of paper to submit to ACL. Looking at the task
from the point of view of reviewers, a sound au-
tomatic model could provide additional insight for
borderline cases, or when reviewers disagree, es-
pecially as full papers are concerned. Addition-
ally, some of the features that the model highlights
as predictive are indicative of qualities that review-
ers are called to comment about, such as novelty,
relevance, thoroughness. Hence, these features
may be useful to authors, especially younger re-
searchers, in order to submit better papers to start
with.

2 Related Work

(Bergsma et al., 2012) is the only work we know
of that specifically focuses on distinguishing ACL
conference from workshop papers (they also ad-
dress whether the paper is written by a native or
non-native speaker; and by a male or female).
Apart from unigrams and bigrams, they use fea-
tures derived fromstyle wordssuch as Latin ab-
breviations; and different types of syntactic fea-
tures computed over all the parse trees derived
from each document; the ones they find more ef-
fective, although more computationally intensive,
are reranking features from (Charniak and John-
son, 2005). Their data is derived from the ACL
Anthology Network (AAN)1: they train on pa-
pers from year 2001 to 2007, and test on papers
from 2008 to 2009. Their best result on distin-
guishing ACL main session from workshop papers
(F1=66.7%) is obtained when they use other NLP
conferences as well (e.g. Coling, EMNLP) to train
the model. We will show that on our ”vs work-
shop” task we obtain F1=70.3% on distinguishing
full from (long) workshop papers, and F1= 74.6%
on distinguishing full from short papers (a task
they do not engage in). Some of our features at-
tempt at encoding novelty and relevance as well.

Other work explores features of papers to pre-
dict impact, such as number of citations and down-
loads. Mostly they use bag-of-words features,
augmented with similarity measures (Bethard and
Jurafsky, 2010) or simple metadata (Yogatama et
al., 2011). Interestingly (Bethard and Jurafsky,
2010) employs topic similarity, computed via La-

1http://clair.eecs.umich.edu/aan/

tent Dirichlet Allocation (LDA) (Blei et al., 2003).
We use LDA topic models as well. However
(Bethard and Jurafsky, 2010) sets the number of
topic to N=100, while we experiment with many
different N’s. Topic models are also used by an
orthogonal line of work that assesses the content
of essays, namely, automated essay scoring (AES)
systems. The first attempts at automatic graders
go back to the 1960s (Page, 1966), but use only
surface features of the text. Modern systems like
CriterionSM (Burstein et al., 2003) andAEA

(Kakkonen et al., 2005) use mathematical mod-
els like Vector Space Model (VSM) (Salton et
al., 1975), Probabilistic Latent Semantic Analysis
(PLSA) (Hofmann, 1999), and LDA, in order to
capture the topical aspects of the essay.

3 Data Sets

We focus on two tasks: distinguishing full papers
(a) from short papers; and (b) from (long) work-
shop papers, at ACL conferences.

For task (a), we downloaded the full papers
and short papers published at the ACL conference
from the year 2008 to 2013 from the ACL anthol-
ogy2. Those specific ACL conferences are confer-
ences that have short papers (as indicated by the
ACL anthology). Papers in 2008-2011 are used as
training data, while papers in 2012 and 2013 are
testing data.

For task (b), using the same data set as in
(Bergsma et al., 2012), we downloaded the full pa-
pers and workshop papers published at the ACL
conference and in its joint workshops from the
year 2001 to 2009. Papers in 2001-2007 are train-
ing data, the rest are testing data. We filtered out
workshop papers shorter than 8 pages, since full
papers usually comprise from 8 to 10 pages.3

Whereas we normalize for length of papers for
both tasks. The reason of this normalization is
that we want uncover the differences in the con-
tent of the papers themselves, since when an au-
thor prepares a paper she/he doesn’t necessarily
know a priori whether the work is more appropri-
ate for short or full paper. Additionally, in other
areas of CS, lengths of different types of papers
(e.g. full vs breaking) are the same, hence fac-
toring out length will help in porting our work to
those other areas. The statistics of the data sets are

2http://aclweb.org/anthology/
3In (Bergsma et al., 2012), they filtered out documents

with fewer than 100 sentences, similarly to what we are doing
here.



shown in Table 1,2. We did not utilize the parsed
papers from the ACL Anthology Reference Cor-
pus (ARC)4 or from the AAN. The ARC only con-
tains papers up to the year 2007. We found that the
AAN metadata is sometimes inaccurate, as con-
cerns both authors’ and authors’ affiliations. The
parsed XML text does not contain all the structure
information we need (e.g. number of pages).

Years Full Papers Short Papers
2008-2011 564 358
2012-2013 285 229

Table 1: Count of Full/Short Papers

Years Full Papers Workshop Papers
2001-2007 576 716
2008-2009 240 196

Table 2: Count of Full/Workshop papers

4 Approach

Our system comprises three main components: (1)
paper parser; (2) feature extractors; and (3) mod-
eling and evaluation component. The architecture
is shown in Figure 1.

Papers are first parsed into structured data (Java
objects). Metadata and terms from the paper are
used directly as features (see the top two boxes on
the right hand-side of Figure 1). The parsed papers
are further processed by the four feature extractors
in the bottom right of Figure 1. Finally, the feature
vectors are sent to supervised learning algorithms.

Here we briefly summarize the six types of fea-
tures we employ, which we will describe in detail
in the rest of this section.

• Metadata (#TAB, #FMLA, #FIG) consists
of the information extracted from the paper
itself. We use the normalized number of ta-
bles/formulas/figures per page as features.

• Terms TF-IDF Score (TITLE, ABSTR):
The maximum TF-IDF scores of terms in the
title and abstract.

• Sentence complexity (COMPX): A vector
of the distribution of sentences by their syn-
tactic complexity, as indicated by the depth
of their phrase structure tree generated by the
Stanford Parser (Klein and Manning, 2002).

4http://acl-arc.comp.nus.edu.sg/

• LDA (Latent Dirichlet Allocation)
(TOPIC): LDA is used to extract top-
ics.

• Popular techniques terms (TECHT): The
counts of techniques which frequently appear
in all years of ACL conferences we consider.

• Author ranking (RANK): A list of authors
extracted from Microsoft Academic Search5.

4.1 Paper Parser

The paper parser consists of three sub-
components: Apache Tika6, Metadata Extractor,
and Title & Author Extractor.

The original papers downloaded from the ACL
web-site are first sent to Apache Tika, which
parses PDF files into HTML-like structured data.
The paper is parsed into several<page>tags
which contain<p>tags that denote the raw para-
graphs in the original paper.

Because the parsing is not very accurate, the
raw paragraphs contain all the text in the paper,
including the page footer, like “Proceedings of...”,
“BioNLP 20...”. After all these noise sentences
are discarded by regular expression matching, the
first raw paragraph is considered as the candi-
date title. The paragraph that starts with “ab-
stract” is taken to be the abstract paragraph. If
no paragraph starts with the term “abstract”, the
first paragraph that contains more than 300 En-
glish letters is considered as the abstract para-
graph. We consider all the paragraphs between ti-
tle and abstract as raw author information that con-
tains the author names, affiliations, and email ad-
dresses. All paragraphs after the key-words “refer-
ence” or “references” are considered as paper ref-
erences. All the paragraphs between abstract and
references are considered as content paragraphs.
Content paragraphs are then sent to the Meta-
data Extractor. The Metadata Extractor uses regu-
lar expressions"ˆ(fig\.|figure)\s * \d+"
and "ˆ(tab\.|table)\s * \d+" to find the
number of figures(#FIG) and number of tables
(#TAB) on each page. Continuous paragraphs
which contain more than 30% non-alphabet En-
glish letters are considered as one formula.
#FMLA is computed as the number of lines which
have been identified as formulas rather than num-
ber of formulas itself.

5http://academic.research.microsoft.com/RankList?
entitytype=2&topDomainID=2&subDomainID=9

6Apache Tika, http://tika.apache.org/
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Figure 1: The architecture of the proposed approach

Candidate title and raw author information are
processed by the Title & Author Extractor. Be-
cause we want our system to have high parsing ac-
curacy, we utilize the DBLP’s web service API7.
This API supports fuzzy query search. We send
the raw title to the API and DBLP returns a list
of matches (if any) ordered by relevance. We take
the real title for the paper to be the highest ranked
match returned by DBLP. Together with the title,
author names are also returned by the DBLP web
API. If a paper does not exist in the DBLP8, we
use Tika to extract the “TITLE” and “AUTHOR”
metadata information from the paper. Such func-
tion of Tika is based on a standard part of meta-
data models, numbered ISO-111799. If again no
title and/or author names are found in the paper’s
metadata, we accept the raw title as the title of the
paper, and the line following the raw title as au-
thor names. The text between the author name and
email addresses are considered as the author’s af-
filiation (email addresses are recognized via regu-
lar expressions).

The final product of the paper parser, is the PDF
paper parsed into a structured Java “Paper” object
that contains one “Metadata”, several “Author”
objects, all the sentences in the abstract/content
paragraphs, and all the references.

7http://www.dblp.org/search/api/?q=[TITLETO SEARCH]
8If our model were to be used to assess whether a potential

submission reaches the quality of a full paper, of course the
paper would not appearyet in DBLP – DBLP can be easily
bypassed in our architecture.

9ISO-11179, http://metadata-stds.org/11179/

It is plausible to assume that for a paper to ap-
pear at ACL, it must provide a novel contribu-
tion, even if lesser novelty is expected of short
papers. At the same time, long and short pa-
pers must be relevant, i.e., topic and the tech-
niques they use must fall within the purview of
the conference itself. Relevance is often judged
even more stringently for workshops, since they
often address very specific topics; at the same
time, workshop papers are not usually as strin-
gently judged on novelty, even if they potentially
may address novel areas. To strike a balance be-
tween these seemingly contrasting constraints, we
capture novelty with respect to title and abstract,
under the assumption that papers with novel ideas
may have titles/abstracts that contain infrequent
terms. In contrast, we capture relevance with re-
spect to the body of the paper (via the topic and
technique analysis to be discussed in Section 4.2).
After the paper has been parsed, TF-IDF scores
for title/abstract terms are computed. Specifically,
stemmed non-stop terms in the title only are used
to compute the TF-IDF score for the title, and like-
wise for the abstract. The highest score of terms in
the title and abstract is used as the featuresTITLE
andABSTR respectively.

The reader may be wondering why we do not
use citations as part of our features. Preliminary
experiments showed that including citations did
not help. We will return to this issue in the Con-
clusions.



4.2 Feature Extractors

Because there is a limit on the number of pages al-
lotted to conference papers, accepted papers must
be clear, expressive and reach a certain level of
writing proficiency. Based on this assumption, we
use asentence analyzer to analyze the complex-
ity of sentences in each paper. Paragraphs in the
paper are split into sentences first, which are then
parsed by the Stanford Parser. The depth of the
sentence parse tree is used as the measure of sen-
tence complexity. Traditional measures of sen-
tence complexity (e.g. to assess the reading level
of a text) simply use word and/or sentence length
(Swales, 1990; Posteguillo, 1999). More sophisti-
cated measures, including parse tree height, have
recently been used in computational models, e.g.
(Schwarm and Ostendorf, 2005). As mentioned,
the most useful syntactic features in (Bergsma et
al., 2012) are reranking features; however, they
note those are very computationally demanding.
We chose a middle path as far as encoding syn-
tactic complexity, and the experiment result shows
our model works better than theirs on the same
dataset. For each paper, we count the number
of sentences with complexity 1, 2, ... up to 40.
We build a feature vector(COMPX) of length
40, where itemi represents the frequency of sen-
tences with complexityi, namely, the number of
sentences with complexityi divided by the total
number of sentences in that paper.

Each discipline is characterized by a certain
number of core topics. Within that purview, more
specific topics come into focus. We believe that
even the research interests and techniques are
shifting, the research topics are remain relatively
stable, and indirectly characterize relevance for
that discipline, and that conference. In order to
find out which topics have more distinguishing
power for a certain year, thetopic analyzer uses
LDA (Latent Dirichlet Allocation). We extract the
top N topics from each training data set; the prob-
ability distribution vector of these N topics is used
as the featureTOPIC. We experimented with vari-
ous values for N (N=5, 10, 15, ..., 75), and the best
N is selected by cross validation for each data set.
We also experimented with Hierarchical Dirichlet
Processes (HDP) (Teh et al., 2006) to eliminate the
need to find the best N. However, the results with
HDP were worse than when selecting the best N
as just described. Hence, in this paper we will not
discuss HDP further.

Unlike the topic analyzer, thetechnical term
analyzer tries to capture technical concepts re-
lated to the methodology employed by the pa-
per: algorithms, techniques, metrics. The LDA
topics just discussed are latent, should closely
characterize each data set, and their number is
one of the experimental parameters. To the con-
trary, the list of technical concepts is a set list
of relevant phrases. For this reason, we build it
across all years, and using all papers. The con-
tents of all the papers are parsed and chunked into
phrases using OpenNLP10. All the noun phrases
(NPs) are gathered. Because technical terms men-
tioned in academic papers most often consist of
nouns/abbreviations which contain upper-case let-
ters, as opposed to all lower-case letters, we dis-
card NPs that contain numbers or symbols, pos-
sessive symbols (’s, s’), or the conjunction “and”.
Among the remaining NPs, all phrases containing
upper-case characters but not in the first term (e.g.
“limited-memory BFGS”) are considered as a can-
didate technique term (we exclude phrases whose
first term is capitalized because the capitalization
is most likely due to being the first word in a sen-
tence). Acronyms (single terms with all letters in
upper-case, e.g. “SVM”) are considered as candi-
date technique terms as well.

These filters result in 57128 candidates, which
are ordered in decreasing order of number of pa-
pers that contain them. The distribution follows
Zipf’s law. Terms that appear in fewer than 10
papers are filtered out. This leaves 285 candi-
dates. A manual step takes place at this point:
we check the list of candidates to select those that
truly correspond to algorithms / models / method-
ology / metrics. In the end, we are left with 41
technique terms that cover 97 potential candidates,
since 56 of those techniques are referred to with
acronyms and/or with synonyms (for example,
MaxEnt and Maximum Entropy). The most fre-
quent metric term is “TER”, that appears in 1298
papers, while the most frequent algorithm term is
“SVM” which appears in 660 papers. while the
least frequent term (LCS, longest common subse-
quence) appears in 38 papers. The feature vector
TECHT for a paper contains the number of occur-
rences of each of the 41 technique terms.

The author ranker extracts the top 2000 au-
thors in the “Natural Language & Speech” area
from Microsoft Academic Search. Then the au-

10OpenNLP, http://opennlp.apache.org/



thor names, affiliations and ranking are stored in
a Lucene index11. Because abbreviation of names
may appear in the paper, we send a fuzzy query to
the Lucene index to retrieve the rank information.
The query is constructed following these rules: (1)
for the name, at least one of first name, last name,
and middle name (if it exists) must be matched
to the record in the index; (2) at least one of the
non-stop words in the affiliation must be matched.
(We tried to assign higher weight to last name than
to first and middle names during the matching,
however the overall model accuracy decreases.)
The records retrieved from the index against the
query are ordered in descending order of match-
ing scores. An empirical matching score threshold
is set in order to filter out unlikely matches. Since
we do not know how many authors of papers ex-
ist in the list of top 2000 ranked researchers, the
threshold is tuned mainly based on the precision
of matching which finally reaches 96.03%, for a
total of 474 unique authors matched in that list.

The rank of the best matched record is retrieved
as the author’s rank. The best rank among all the
authors of the paper is used as the feature,RANK.

5 Results and Discussion

We experimented with four supervised ap-
proaches: Decision Trees (C4.5), Naive Bayes,
Logistic Regression and SVM. SVM models per-
formed better in every single experiment, statisti-
cally significantly so when compared to baseline
and to each of the other algorithms (viaχ2 at the
0.05% significance level). Hence, in the following
we only report SVM results.

As mentioned in Section 3 we have two training
data sets, and two testing data sets for two different
tasks. We built separate models that distinguish
between full and short papers, and full and work-
shop papers independently on those two training
data sets. Since there are 9 proposed features in
our system, the number of possible combinations
is 29 − 1 = 511. We evaluate our approach and
select the best feature combination by conducting
10-fold cross-validation using all 511 feature com-
binations on each of the two training data sets. Ad-
ditionally, we experiment with different numbers
of LDA topics, with N varying over{5, 10, 15, ...,
75}, and find that on both training data sets, the
best N is 35. Then, we test our models on the cor-
responding testing data sets.

11Apache Lucene, http://lucene.apache.org/

For distinguishing full papers from short papers,
since no previous results exist as far as we know,
the baseline is obtained by randomly assigning full
or short to each paper, following the original dis-
tribution. This sample procedure was iterated for
99 rounds. The result with the median F-score
among the 99 iterations is used as our baseline
(F1 = 55.7%). On testing data set, we compare
our result with the best Venue task performance
F1 = 66.7% in (Bergsma et al., 2012),

Table 3 shows the results on testing data using
best features which are selected from training data
sets. We can see from the results that our model
work better than all the baselines, and outperform
(Bergsma et al., 2012)’s model by at least 3.6%.
For the ‘vs workshop’ task, besides the best fea-
ture combination, we also list the best combination
without RANK feature. This is because ACL con-
ference submissions are double blind, in practice,
we may not get such ranking information. Inter-
estingly, this second feature combination does not
include TECHT features either. TECHT features
are the only ones in our model where some manual
filtering was applied. Hence, we show that we can
obtain better models with a completely automatic
pipeline as well.

Turning now to the features that appear in the
best feature combinations, metadata as concerns
the number of lines containing formulas (#FMLA)
appears in all the three models. Number of ta-
bles per page (#TAB) and sentence complexity
(COMPX) are useful in differentiating full papers
from short papers and from workshop papers when
RANK is not available. Measures of “complete-
ness/evaluation” of the research as expressed by
number of tables, figures, and/or formulas are im-
portant to distinguish full from (long) workshop
papers at ACL. As far as COMPX is concerned,
we will show later that there may be latent models
that full paper fit better than the others (but con-
trary to our initial intuition, it is short/workshop
papers that have more complex sentences). TOPIC
appears in every combination for the ‘vs work-
shop’ task, but does not work so well for the ‘vs
short’ task. This corresponds to the intuition that
full papers resemble short papers more than work-
shop papers as far as topic is concerned (which is
more focused for workshops).

We also compared the performance of each in-
dividual feature (due to space limitation, we don’t
list them here). The result shows that even if



Task Pre. Rec. F-1 Base. Best Feature Combination
vs Short 75.1 74.5 74.6 55.7 #FMLA+#TAB+ABSTR+COMPX

vs Workshop
72.1 72.0 71.7

66.7*
#FMLA+TITLE+ABSTR+TOPIC+TECHT+RANK

71.1 70.9 70.3 #FMLA+#TAB+TITLE+TOPIC+COMPX

Table 3: Best Feature Combination on Testing Data.* is the best result reported in (Bergsma et al., 2012)

TITLE, ABSTR and RANK don’t perform well
when used alone (F1 = 55.6%, 56.5%, 41.5% on
‘vs workshop’ testing data set, respectively), as we
can see, they appear in the best feature combina-
tions. Recall that the TITLE/ABSTR feature at-
tempts at capturing novelty via the highest TF-IDF
score for terms in the title/abstract. Since review-
ing is double blind for full and short papers, we
hypothesize that the RANK feature appearing in
some results simply reflects the quality of work
that highly ranked authors produce. It is also pos-
sible that reviewers guess some authors’ identity,
i.e. via the topic or references in the paper. How-
ever this possibility seems remote, since RANK
by itself is not very predictive.

5.1 Model analysis

The following features appear in more than one
best model: Metadata (#FMLA, #TAB), TOPIC,
TF-IDF scores (ABSTR, TITLE) and sentence
complexity (COMPX). Hence, they deserve fur-
ther investigation. Additionally, we investigate the
role played by RANK, since we want to assess
why it appears in the “full vs workshop” mod-
els, but not in the “full vs short” models. For
LDA topics, plausible interpretations of 4 out of
the 5 most distinguishing topics in ”vs workshop”
model (topic is not among best features for ”vs
short” model) are: dialogue/speech; ontology and
semantics; annotation; probabilistic models. We
leave the further study of the effect of LDA for fu-
ture work, since they are latent (e.g. probabilistic
distributions over words).

Author ranking (RANK) We did not find dif-
ferences between the respective ranks of authors in
the full, short and workshop papers: namely, each
year, the highest, lowest, and average ranks of au-
thors of full, short and workshop papers are very
similar. However, the number of papers for which
at least one author appears in the top author list are
different in the ‘vs workshop’ group, but not in the
‘vs short’ group. Table 4 shows that among all the
papers in our data sets, around half of the full/short
papers have top authors, while only one fourth

of workshop papers do. This seems to suggest
that highly ranked authors value maintaining their
research paths more than moving to new topics,
which are more often addressed by workshops. It
also explains why RANK does not appear among
predictive features for the ‘vs short’ task.

Full Short Workshop
Highest rank 2 2 2
Lowest rank 1997 1997 1978
Average rank 580 586 583

Percentage (%) 53.0 44.3 25.1

Table 4:Highest/lowest/average author ranks, and percent-
age of papers where at least one author belongs to the top
2000 author list

Feature Full Short Workshop
#FMLA 2.356 1.639 1.327
#TAB 0.426 0.455 0.378

Table 5:Avg. number of formulas, and tables per page

Metadata (#FMLA, #TAB) Table 5 shows the
statistics for the average number of each metadata
type on each page in each data set – tables, for-
mulas (recall that #FMLA is the number of lines
that have been identified as formulas). It can be
seen that full papers always include more formula
lines than short/workshop papers, and almost so
for tables. We speculate that tables and formulas
correlate with mature work, since e.g. they char-
acterize more extensive evaluation. Additionally,
tables may be indicative of better written papers
since they help summarize concepts that may be
difficult to effectively express (only) in words.

TF-IDF scores (TITLE, ABSTR) As men-
tioned, we use the maximum TF-IDF scores of
terms in the title and abstract as features in our sys-
tem. We measured the average value of these two
features for different paper types, see Table 6. Full
papers seem to use more novel terms in the ab-
stract than others, but on the other hand use fewer
novel terms in title. This may suggest that full
papers focus more on mainstream research top-
ics (as reflected by the title), but use novel tech-



niques (as reflected by the abstract). On the con-
trary, short/workshop papers address more novel
topics but use more mature techniques.

Feature Full Short Workshop
TITLE 6.95 7.30 7.63
ABSTR 17.15 15.55 15.82

Table 6:Avg. TITLE/ABSTR in different paper types

Data Set #SigCompl #SigFull
vs short 35 33

vs workshop 35 31

Table 7:Fit to model of sentence complexity

Sentence complexity (COMPX) We believe
that the difference in sentence complexity between
full and short papers, and also wrt workshop pa-
pers to a smaller extent, may be due to a latent
model. As we mentioned in Section 4.2, for each
paperj, xi,j is the frequency of sentences.

To verify whether a latent model un-
derlying sentence complexity exists, first,
for each complexity i we build two vec-
tors, the distribution of the positive sample
(fulli,1, fulli,2, ..., fulli,FULL) and of the nega-
tive sample (otheri,1, otheri,2, ..., otheri,OTHER)
(where FULL and OTHER are the total number
of full and short/workshop papers, respectively).
Hence, there are 40 pairs of such vectors. For
each complexityi, we check whether the two
distributions are significantly different via the
F-test (α=0.01). If they are, we compute the
variances for both positive (full) and negative
(short/workshop) samples, to see if variance
among full papers at complexityi is smaller
than the variance among short/workshop papers
(i.e. it fits the latent model more tightly). The
results are shown in Table 7.#SigComplis the
number of complexity values that are significantly
different, out of 40 possible, in our data sets;
#SigFull is the number of#SigComplcomplexity
values for which the full papers fit the model
more tightly. E.g. for ‘vs short’, on 35 out
of 40 complexity values, the two distributions
are different (#SigCompl = 35); 33 times out
of those 35 (#SigFull=33), the variance among
full papers is lower than the variance for short
papers. Contrary to our initial intuition, it is full
papers that on average have the lowest level of
complexity, workshop papers in the middle, and

short the highest. Since short papers have less
space, authors seem to pack as much information
as possible, including via syntactic structures.

6 Conclusions and Future Work

Our results show that we can assess a paper’s qual-
ity with good results, we outperform (Bergsma et
al., 2012)’s model by at least 3.6%. Topic dis-
tribution as learned by the LDA model, metadata
(number of tables, and number of lines of math-
ematical formulas) and sentence complexity are
the most predictive features. TF-IDF of title and
abstract, author ranking, and technique terms also
contribute to the overall models. Topics and tech-
nique terms indirectly capture the notion of rele-
vance and presumably also specific trends in re-
search. On the other hand, TF-IDF of title and ab-
stract partly reflect novelty. Metadata hints at the
fact that mature work is described in a more struc-
tured way. Full papers also fit the model of sen-
tence complexity more tightly. Because reviewing
is blind, the author’s ranking cannot directly influ-
ence the decision of the reviewers. However, au-
thor ranking probably reflects the quality of work
that highly ranked authors produce.

There are many open venues for improvement.
First, we intend to apply our methodology to other
conferences in the same area, and in other areas of
Computer Science. We intend to enhance the tech-
nique term extraction procedure, which will even-
tually eliminate the only manual step in the whole
pipeline. The novelty of a paper usually plays a
very important role in the perceived quality of a
paper, so we will investigate more sophisticated
ways to measure such novelty. In this work, we
did not use the paper references among our fea-
tures, since preliminary experiments that included
references among the features were not promising.
However, because a good work tends to cite good
works, we will explore more sophisticated models
of citations, such as those based on citation net-
works (Mohammad et al., 2009).
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