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Abstract

This paper presents an approach for representing
queries in natural language as semantic networks. The
semantic representation is intended to facilitate the trans-
lation between natural language and database queries. A
domain agnostic algorithm, based on shallow features, is
used to map a sentence to a sub-network of concepts within
a larger ontology. This work focuses on transportation in-
formation systems and gives promising preliminary results.

Keywords-natural language processing, query representa-
tion, ontologies, natural language interfaces;

I. Introduction

Natural language provides a powerful and intuitive input
modality for users. The expressive power is tremendous
and the users are already familiar with the language.
Unfortunately, these same features that make natural lan-
guage so powerful also make its understanding difficult.
In this paper, we present a domain agnostic approach of
interpreting the explicit and implicit semantics of a natural
language query in the presence of a domain ontology.
By domain agnostic we mean that the algorithm does
not depend on the domain of the ontology being used.
The algorithm relies only on the annotation (discussed in
Section III-C) and concept labels specified in the ontology.

Because testing the algorithm independent of any do-
main is impossible, we will introduce it in the domain
of transportation – specifically, this preliminary work is
intended to model the semantics of a natural language
query to a transportation information database system [1].
In the future, these results will be used for the development
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of a fully functional natural language interface to the
transportation database system. Within this domain, we
will demonstrate how we can derive detailed semantic
representations of queries such as:

• When will the bus arrive?
• Which train station is closer, Clark and Lake or

Washington and State?
• What is the fastest way home today?
The primary contributions of this research are 1) a

classification of query sentence classes based on shallow
linguistic cues 2) a domain agnostic algorithm for mapping
query sentences to ontological concepts, and 3) a method
for describing query semantics as connected subsets of
an ontology. The paper is structured as follows: first we
discuss related work, then we introduce our test domain
and the proposed semantic alignment algorithm. We then
present the initial evaluation of the algorithm before pro-
viding concluding remarks and directions of continued
research.

II. Related Work

Natural language interfaces (NLI) is a well studied
field that has enjoyed a resurgence in interest in recent
years thanks to the availability of cheap computational
power, ubiquitous mobile devices, and significantly im-
proved voice recognition software. Despite having been
studied for several decades [2], [3], natural language
interfaces to database systems (NLDB) are still difficult
to construct. One of the problems they suffer from is the
lack of portability across systems and domains. Another
significant problem is the specificity of the grammar (or
recognized language) that the systems use. A system that
works well for a database containing employee information
would have to be redesigned if it were to access a database
regarding transit schedules. This results in rigid grammar,
constrained vocabulary, and a steep learning curve. It is for
this reason that we attempt to remove as many grammatical



and vocabulary constraints as possible. Rather than rely
heavily on the syntactic structure, our approach differs in
that we utilize dependency relationships which are not as
sensitive to the overall sentence structure.

More recently, the community has seen an increase
in NLIs to semantic web systems. NLP-Reduce [4] is
a domain-agnostic NLI to semantic web ontologies. It
does not rely on complex natural language processing,
nor does it use a grammar. It extracts keywords and
attempts to generate simple queries. AquaLog [5] and its
successor PowerAqua [6] are question answering systems
that operate on semantic web ontologies. Like our work, it
takes full sentences for the input query and uses WordNet
to expand the vocabulary that is understood. However, their
approach does not generate a rich semantic representation
of the complete query.

There have been many approaches to representing query
semantics: first order logic, intensional logic, semantic
frames, and Montague semantics. A more detailed study
of these techniques can be found in Clifford’s text [7]. As
the more recent NLI work has moved towards applications
on the semantic web, we have chosen to utilize ontologies
as a powerful and flexible semantic representation model.
Importantly, the ontologies can be used to represent the
query itself as well as the greater context in which it exists
(both within the system and the real world – i.e., the user).

This contextual information is important because users
will often make references that require context to be
understood. In linguistics, these terms are known as deixis.
These contexts may be time, location, or speaker depen-
dent. Winter [8] showed that being able to interpret this
type of language is important in route planning – which is
a vital component of our larger research focus.

It is apparent that our algorithm is similar to a number
found in the ontology alignment community [9], but there
are a number of significant differences between traditional
ontology alignment and the problem we face: 1) there is
no chance for human intervention for fixing bad matches,
2) there is no a-priori ontological structure on the input
side, and 3) the input concepts must be a subset of the
target ontology concepts.

Finally, we mention our previous work in the develop-
ment of a database model and query language targeted for
use in transportation information systems. The extended
SQL-like language [1] provides a means to describe both
the spatial, temporal and probabilistic aspects of trips
throughout a transportation network.

III. Algorithm

A. Overview

The purpose of the algorithm is to process a syntactic
parse-graph and determine where the concepts1 within that
graph are represented within the semantic model. In order
to motivate the algorithm in the remainder of this section,
we start with an example of the desired output. If we are
given a query sentence, Is there a cheap place to eat on
my way home?, the resulting semantic representation of
that sentence is the semantic network shown in Figure 1.
The concepts drawn in dashed line are those that were
identified as being in both the semantic model and the
initial query sentence. The concept #PLACE (in uppercase)
was identified as being the target of the query (i.e., what
the user is looking for). The remaining concepts, in black
line, are implicit in the meaning of the query, but can only
be utilized when given the relevant semantic context.

B. Parsing

The initial input to the system is the natural language
sentence and the ontology. The sentence is parsed using
the Stanford Parser [10], [11]. The output of the parsing
is a graph that combines a standard syntactic tree tagged
with part-of-speech (POS) labels and edges representing
dependency2 relations. The remainder of this section pro-
vides the details of how this syntactic parse, in conjunction
with the semantic model, is mapped into a rich semantic
representation.

C. Domain Model

The algorithm itself is domain agnostic, but for the
purpose of evaluation we have chosen to develop an
ontology for the transportation domain. This ontology
contains concepts related to the physical network (e.g.,
links, intersections, speeds), resources of interest (e.g.,
grocery stores, banks), events (e.g., starting, stopping,
transferring, shopping, working), and route-based concepts
(e.g., trips and their sub-components). In addition to the
transportation concepts we model a number of what could
be considered linguistic deixis – terms like prepositions
(e.g., along, near, around) and qualitatives (e.g., best)
that can be used in conjunction with concepts within the
transportation system. The final concept is that of a user,
which has certain properties and is assumed to interact

1For the remainder of the paper, concepts will include both classes and
properties.

2The dependency relations represent how the words are related re-
gardless of the syntactic structure. Examples include direct object and
modifying relationships.
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Figure 1. Semantic Network Representation

with the system. Broadly speaking, these concepts can be
divided into categories of abstract, spatial, temporal, and
spatio-temporal.

The concepts and properties within the ontology were
manually annotated with their corresponding WordNet
[12] entries wherever a suitable entry exists. Additionally,
some of the classes and properties have been annotated
with specific colloquialisms or non-literal synonyms where
appropriate. This is done because no linguistic resource
maintains a list of local colloquial language. The anno-
tation is used in the alignment algorithm as a way of
extending the vocabulary used as well as providing some
level of semantic information.

D. Candidate Set Generation

After the initial syntactic parse, the next task is the
generation of the candidate set – the set of concepts within
the ontology that may align to terms in the query sentence.
This is done through a pair-wise comparison between a
subset of the sentence graph nodes and the concepts in the
ontology. Noun, compound noun, conjunctive noun phrase,
verb, adjective, adverb, and preposition nodes are included
in the search.

A list of stop words are ignored in the initial input. The
stop words used are not the same as those commonly found
in other natural language processing tasks as the generic
stop word lists include prepositions and other words that
carry important semantic information. The current list of
stop words for our algorithm is [are, is, does, the, a, there,
what, where, when, which, why, me, my, find, locate, get,
tell]. These are common words that do not align with any
specific concept in the ontology.

In generating the candidate set there are two primary

comparison methods: plain text-based and WordNet-based.
For the plain text comparison the surface form of the word
(i.e., the word itself) is compared against the label for the
concept in the ontology. The comparison is done by a direct
equivalence match, edit distance match, and stemming
match. The first simply checks whether the two strings
are identical (case insensitive), the edit distance checks for
equivalence within an edit distance of k, and the stemmed
match checks whether the label stems3 match. The same
string metrics are applied to the colloquial annotation and
the node surface text. Similarly, nodes are matched against
the instances in the ontology. For example, Sears Tower
would align to the name of a specific building (i.e., an
instance of a concept).

The second type of matching relies on WordNet to
determine synonymy. As stated in Section III-C, most
of the concepts in the ontology were labeled with an
appropriate WordNet index and sense number. The index is
a pointer to a set of synonyms for the word and is indexed
by a word (lemma) and part-of-speech. For example, in
our ontology the concept bus has the index [bus, noun]
and sense number 1. This points to a synset with the
following terms {bus, autobus, coach, charabanc, double-
decker, jitney, motorbus, motor coach, omnibus, passenger
vehicle}.

For the nodes in the parse graph we generate Word-
Net information in two ways. The first, and likely more
accurate, method uses the surface form of the word and
the part-of-speech tag returned by the parser to lookup the
appropriate WordNet index. The second method uses only

3Stemming is a common technique that attempts to extract the root of
the word. For example, matching, matcher, and matches all have the stem
match.



the surface word and no part-of-speech information and
returns a set of WordNet indices. It should be noted that
for either method we lack knowledge of the appropriate
sense number for the indices. That means that bus may
refer to a computer bus (i.e., a device that transfers data
between components) as well as the vehicle. We ignore
this problem for now as we are generating candidates for
matches.

For each of the potential indices of the node, the syn-
onym, hypernym, and hyponym synsets are enumerated.
If any of these matches the pre-defined synset for the
ontology concept it is considered a candidate.

E. Candidate Selection

At the end of the candidate generation phase there will
likely be multiple candidates for some nodes, and some or
all of these candidates may be incorrect. For that reason
we need a ranking and selection metric to determine which
candidates are true matches for any given node. We have
defined the list of match types, and through empirical
tuning have set their corresponding weight, that can be
found in Tables I and II.

Concept Target String Distance Measure Weight
Plain TextConceptLabel Equal 1
Plain TextColloquialLabel Equal 1
Plain TextInstanceLabel Equal 1
Plain TextConceptLabel Stemmed Equal .25
Plain TextColloquialLabel Stemmed Equal .25
Plain TextInstanceLabel Stemmed Equal .25
Plain TextConceptLabel Edit Distance: 1 .15
Plain TextColloquialLabel Edit Distance: 1 .15
Plain TextInstanceLabel Edit Distance: 1 .15
Plain TextConceptLabel Edit Distance: 2 .05
Plain TextColloquialLabel Edit Distance: 2 .05
Plain TextInstanceLabel Edit Distance: 2 .05

Table I. Weights for String Matches

Node Source Concept Target Weight
SynonymLemma+POS WNI .5
HypernymLemma+POS WNI .1
HyponymLemma+POS WNI .1
SynonymLemma WNI .25
HypernymLemma WNI .05
HyponymLemma WNI .05

Table II. Weights for WordNet Matches

For each candidate, the match weights are summed to
give the cumulative match score. The concept that has
the maximum cumulative weight is considered the correct
match for the node. There is a minimum threshold of .24
for any match to occur.

F. Query Target Identification

Now that the sentence has been mapped to a set of
concepts within the ontology, we must identify the target
concept for the query. In our ongoing example the place is
the query target as it is the concept for which the user is
searching. Through empirical testing, we found that there
are several classes of queries for which the target can be
identified using shallow linguistic features. For each class
of query targets we have determined a set of identifying
cues. The cues present in any input query determine which
method is used for selecting the query target.

1) Copula: The first class of queries can be identified
by their overall structure. Queries of the form What is/are
...? and Is/Are there ... ?, such as

• What is the fastest way home today?
• Is there a grocery store in this neighborhood?

are handled by identifying the copular4 dependency of the
conjugated verb to be. In the case of our ongoing example
(Is there a cheap place to eat on my way home?) this is
indicated by an edge labeled cop between is and place in
the dependency graph produced by the syntactic parser.

2) Nominal Subject: Similar to the class of queries that
can be identified by a copular dependency, another class
can be identified though nominal subject5 dependencies.
The most important construct in this class is Where is/are...
?, such as the queries:

• Where is the cheapest gas station?
• Where are nearby parks?

The query targets in these sentences can be identified by
looking at the nominal subject dependency of the verb to
be. In the first example the dependency is is→station.

3) Copula + Nominal Subject: Queries of the form
Which X is ... ?”, where X is some arbitrary resource,
have slightly more complicated structures than those des-
cussed thus far, but we can still identify the query target
using the dependency parse. In queries like,

• Which train station is closer, Clark and Lake or
Washington and State?

• Which street near my house is the least congested?
we can identify the query target by using two depen-
dencies: copula and nominal subject. In the first exam-
ple, the copular dependency is is→closer; similarly, the
dependency in the second example is is→congested. In
both cases the target of the copular dependency is in
a second dependency relationship of nominal subject. In
the first example we see the nominal subject depen-
dency closer→station and in the second example con-
gested→street. This dependency chain generalizes and we

4A copula is a word used to connect a subject with a predicate – even
if there is no action or condition between the subject and predicate. A
copular verb is often called a linking verb.

5A nominal subject is a noun phrase that is the subject of a clause.



are able to identify the query target finding the nominal
subject dependency of the copular dependency of to be.

4) Direct Object: Another large class of queries is
characterized by the type of verb used. Find, locate,
determine, get, give and others all explicitly specify a direct
object of interest. Once again, this target can be identified
using the dependency parse – the direct object of the head
verb points to the query target. Examples of such queries
include:

• Find a pharmacy near my house.
• Give me the closest ATM.

In the first example the direct object dependency is as
follows: find→pharmacy.

5) Temporal: The final class of query targets we can
identify are those that have a temporal query target. Ex-
amples include,

• What time does my train depart?
• When will the bus arrive?
• How long is the wait?

These queries are not covered by the classes above, but
they do possess a temporal concept from the ontology. If
all other cases fail, and there is a temporal concept present,
we assume that the temporal concept is the target of the
query. Temporal concepts can be identified as they are a
subclass of the Temporal concept in the ontology.

G. Result Generation

The final phase of the algorithm is the generation of the
semantic sub-network. We have identified both the set of
ontology concepts present in the query as well as which
concept is the target of the query. Given this information,
we can find the concepts and properties that link them
together.

The set of concepts exist within the ontology, and
we execute a frontier search to find paths through the
ontology that connect the concepts. We perform a breadth-
first expansion (treating the directed ontology network as
an undirected network) to a depth of three for each class.
Similarly, for properties we perform the same expansion
starting with the classes that the property relates. This
process produces a small, local network for each concept.
We take the union of the local networks and then prune
all nodes that do not lie on a path between the concepts
identified in the query sentence.

IV. Results

In this section we will discuss the match weight tuning
and overall system performance. For testing and tuning the
algorithm we focused on the twelve example sentences

presented throughout this paper. Each sentence was suc-
cessfully parsed and represented as a parse-graph. After
pruning for stop words, a total of 43 nodes were identified
for the candidate generation phase. Candidates for each
node were generated using the algorithm described in
Section III-D. More than half of the nodes (25/43) had
multiple candidate matches. More details can be found in
Table III.

Nodes Tested 43
Mean Candidates per Node 2.76
Median Candidates per Node 2
Std. Dev. Candidates per Node 2.61
Max Candidates per Node 11
Min Candidates per Node 1
Nodes with 1 Candidate 18

Table III. Candidate Generation Statistics

Once the candidate generation phase was completed we
manually analyzed the data in order to determine the ap-
propriate match weights. A “gold standard” alignment was
generated by hand so that there would be a metric to score
the resolution algorithm. Weights were changed manually
over multiple iterations until the best performance was
achieved.

Nodes Correctly Resolved 39
Nodes Semi-Correctly Resolved 3
Nodes Incorrectly Resolved 0
Nodes Correctly Unresolved 1
Nodes Incorrectly Unresolved 0
Total Nodes 43

Table IV. Candidate Resolution Statistics

Shown in Table IV is the performance of the candidate
resolution algorithm. On this set of input the algorithm is
overwhelming successful with an accuracy of 93%. There
were no completely wrong resolutions. The three semi-
correct resolutions are the result of three nodes being
mapped to a concept that was too general. In one case
a node should have been mapped to a station but was
mapped to a facility instead. The mapping is semantically
correct, but the more specific concept would be preferable.
The correctly unresolved node was one that had generated
candidates even though there was no appropriate concept
in the ontology. The weight of the match was not greater
than the threshold needed so it was not resolved to any
concept.

The next phase of the algorithm was the detection of
the query target. For these test sentences, all of the query
targets were successfully identified. As with the other
phases of the algorithm, the current approach appears to
work well for connecting the concepts. It may be the case
that for certain inputs the connections include too many or
too few concepts.



The results thus far show that this is a promising
approach to generating an ontology-based representation
for single-sentence natural language queries. The test sen-
tences used were selected such that their concepts are
present in the ontology – this did not necessarily mean
that those concepts would be identified correctly. It will
always be the case that concepts beyond the scope of the
ontology cannot be mapped correctly.

V. Conclusions and Future Work

We have presented a domain agnostic algorithm for
representing single sentence queries as semantic networks
based on a domain ontology. This makes the implicit
sentence semantics explicit in the final representation. The
ontology provides semantics for generic spatio-temporal
relationships as they apply to language. Knowing the
semantics for a word such as along means that the system
can look for, and use, the appropriate concepts elsewhere
in the sentence.

We have achieved interesting and promising results
thus far, but we have a number of directions that we
would like to explore in the future. At this time we do
not make use the WordNet gloss information, nor do we
use additional resources like SUMO [13]. These would
allow for richer candidate set generation. Additionally, the
candidate generation phase could be improved with better
string metrics, more advanced WordNet comparisons, and
other techniques from the ontology alignment community.
The current candidate selection algorithm relies only on
weights attributed to match types. Focus should be put
on minimizing the distance between concepts within the
ontology. Intuitively, the concepts in a given query should
be semantically close, and therefore they should be close
within the ontology.

We will also continue extending the coverage of the on-
tology (as well as trying different domain ontologies) and
explore additional grammatical cases that can be parsed.
We also understand that the current level of evaluation is
insufficient to draw any concrete conclusions beyond the
fact that this approach looks promising. A larger corpus
of queries is required for further evaluation. The most
important class of language in need of exploration is that of
the more complicated trip queries mentioned in the related
work. We would also like to look at what happens when the
input consists of multiple sentences or sentence fragments.

As stated in the introduction, the ultimate purpose of
this semantic representation is the facilitation of generating
database queries from natural language input. The most
interesting, and demanding, future work will be leveraging
our representation in building a functional NLDB system
for transportation.
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