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� Navigating large, urban transportation networks is a complicated task. A user needs to negotiate
the available modes of transportation, their schedules, and how they are interconnected. In this
article we present a Natural Language interface for trip planning in complex, multimodal, urban
transportation networks. Our objective is to provide robust understanding of complex requests while
giving the user flexibility in their language. 10

We designed TRANQUYL, a transportation query language for trip planning; we developed
a user-centric ontology, which defines the concepts covered by the interface and allows for a broad
vocabulary. NL2TRANQUYL, the software system built on these foundations, translates English
requests into formal TRANQUYL queries. Through a detailed intrinsic evaluation, we show that
NL2TRANQUYL is highly accurate and robust with respect to paraphrasing requests, as well as
handling fragmented or telegraphic requests.

15

INTRODUCTION

Imagine arriving in a new city where you know very little about the trans-
portation system. You know where you are staying and maybe one or two
other points of interest, however, you have not had a chance to learn where 20
other resources, such as a bank, are located, nor have you learned the intrica-
cies of the public transportation system. Whether you are on vacation or have
recently moved, you will want to go out into the city. You might wish to go out
and explore by wandering without direction, or wait and study the necessary
maps and timetables first, but one of the easiest ways to find a new place or 25
get directions is to simply ask someone. It is not surprising that more and
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more services that provide directions—whether online at home, on your car
navigation system, or on your cell phone—are available to users that need to
go somewhere. Although these systems are useful, they all lack one or more
useful features. This task is frequently more complicated than simply find- 30
ing a path from Point A to Point B, made familiar by interactive map-based
services such as Google Maps and GPS units. These systems know very lit-
tle (if anything) about you—the user—and, therefore, cannot make use of
personal information. Additionally, the interfaces tend to be map or menu
driven, which might not be appropriate in many circumstances (e.g., while 35
driving or walking). In this article we will present a robust natural language
system that addresses these issues and others, including specifying interme-
diate stops at generic or specific facilities (a florist, my doctor), and expressing
degrees of certainty.

Intelligent transportation systems such as those supported by the 40
Intellidrive initiative of the US Department of Transportation (United
States Research and Innovative Technology Administration 2011) address
transportation problems ranging from real-time routing and navigation, to
autonomous driving, to inferring driving patterns via data mining. A large
group of researchers to which we belong is engaged in developing an 45
Intelligent Traveler Assistant (ITA)1 (Dillenburg, Wolfson, and Nelson 2002;
Zhong, Xu, and Wolfson 2008), which will run on handheld comput-
ers and will be networked to a traffic information center that can plan
multimodal routes for users (note that, here, multimodal refers to multiple
modes of transportation, such as driving, walking, using public transporta- 50
tion, opposed to multiple modes of input to, and output from, a computer,
such as voice or touch).

In this article, we present NL2TRANQUYL, the module of our ITA that
allows users to ask for directions using natural language (NL). Especially
when faced with a large multimodal transportation system, knowing how to 55
best get around a city is a challenge. A person must understand the var-
ious train and bus routes, schedules, fare structures, and even how those
systems interact with the pedestrian and automobile networks. Depending
on the circumstances, a person might wish to optimize their trip in differ-
ent ways: taking the least time, traveling the shortest distance, or choosing 60
the least expensive route. Additionally, the system should understand refer-
ences specific to that user and his/her current context. For the remainder of
this article, we consider a “trip” to be an itinerary, or set of instructions, that
satisfy a user’s needs when traveling through the transportation network.

The following request examples illustrate some of these requirements 65
(note that all numbered example requests throughout the article were used

1For more information on the research group, visit the Computational Transportation Science page
at http://cts.cs.uic.edu/.
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in the formal evaluation). Note that, to minimize confusion, we use the term
request when referring to the English question or command, and the term
query to refer to the formal query in the TRANQUYL language.

1. Arriving after 6:00 p.m., find the cheapest route to my apartment. 70
2. Which transit route home has the fewest transfers and allows me to visit a grocery

store?
3. What is the fastest transit route from my house to my office that stops at a bank,

grocery store, and pharmacist and arrives before 9:00 p.m. for less than $6.50?

One question arises: why use NL in such a system, when the state of the 75
art in speech and language processing does not allow for full, unconstrained
language interactions yet? However, whereas menu-based systems can be
used to easily browse for information, their search capacity is predefined and
inflexible (Cohen 1992; Grasso, Ebert, and Finin 1998). They also require
physical interaction with the device, which is difficult in eyes-busy/hands- 80
busy situations. Further, various studies (Cohen 1992; Grasso, Ebert, and
Finin 1998; Kaufmann and Bernstein 2008) show that NL is typically better at
expressing certain questions/commands, such as those requiring negation,
quantification, and temporal information; additionally, using NL typically
reduces task-completion time. 85

Apart from the general area of interfaces to transportation systems, there
has been recent interest in using natural language interfaces (NLIs) in
semantic web applications or databases. We will discuss related literature in
more detail in later sections, but here, we note that, for example (Kaufmann
and Bernstein 2008) found that NLIs were effective in helping nonexpert 90
users access information in semantic web databases. Interestingly, they deter-
mined that users appreciated the power of fully grammatical sentences more
than sentence fragments or keywords.

For all of these reasons, we decided to explore NL solutions with respect
to the trip-planning problem. Our system, NL2TRANQUYL, is capable of 95
processing complex requests with a robust vocabulary and very loose gram-
matical constraints. We believe that this emulates the most straightforward
method of trip planning—simply asking someone for help. We emphasize
robustness in allowing for sentence fragments and poor grammar, as might
arise in natural conversation. Additionally, we utilize a user-centric ontology 100
to infer the meaning of personal references and preferences so that they
do not need to be explicitly stated for each request. Naturally, our system
builds on a transportation query language, TRANQUYL, which we designed,
because no existing transportation query language was broad enough to
capture our needs. 105

In the remainder of this introduction, we will describe aspects of urban
transportation networks that make them a unique and interesting domain
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to address. We will also discuss some general requirements that arise for the
kind of language that an NLI to an ITA needs to support.

The Multimodal Urban Transportation Network 110

Multimodal urban transportation networks provide new challenges for
both data modeling and natural language processing. The urban network
comprises multiple different modes of transportation (e.g., bus, train, auto-
mobile, pedestrian) that interconnect and serve users and facilities (e.g.,
stores, hospitals). All of these entities have both spatial and temporal dimen- 115
sions that might change over time (e.g., hours of operation of a store,
the current position of a user, the status of a road at a specific time).
We also know that there is a great deal of uncertainty in the system:
buses do not always run on time and roads become congested. For these
reasons, we have found that the chosen domain provides new research 120
challenges.

At this time, we would like to point out some key differences to what
is perhaps the most well-known and relevant related work—the Air Travel
Information System (ATIS) (Hemphill, Godfrey, and Doddington 1990) cor-
pus and related projects. The set of potential constraints on air travel is 125
generally much smaller than that in urban transportation. Airline passen-
gers must select an origin and destination, a departure time, and possibly
a constraint on the number of layovers, if possible. The only real optimiza-
tion metrics are the cost and duration of the trip. The actual path taken is
largely irrelevant to the user (e.g., preferring to fly over Montana rather than 130
Nebraska) whereas the layovers are generally considered a nuisance rather
than a point of interest to specify.

In an urban environment, the path you take might actually be relevant
depending on the user’s wishes. It is not unreasonable to wish to include a
park on your walk home from work, or to avoid a neighborhood known for 135
heavy congestion. You may wish to minimize cost, duration, or number of
transfers depending not only on your destination, but also on how you plan
to travel. The temporal constraints can be much more granular because you
are not restricted to a handful of departures each day.

This richer problem domain gives us an opportunity to process more 140
elaborate requests that have features not present in earlier systems. Also,
although many previous systems rely on a dialogue to collect enough
information to form a query, we restrict ourselves to a single input sen-
tence. All of the query constraints must be inferred from the input
sentence and our background knowledge of the user. We show that, 145
even without a chance to fix the input, we are able to achieve high
accuracy.
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Natural Language Considerations

Before discussing the software implementation, it is important to under-
stand the scope of natural language we are working with as well as the reason 150
for that selection. Clearly, it would be ideal to allow users to ask any possi-
ble question even tangentially related to transportation, but such a broadly
functional system is still beyond the state of the art for any natural language
processing application. Instead, we chose to focus on a single task area that
is in high demand: trip planning. 155

A few corpora pertaining to specific travel needs exist, such as flight
reservations (the ATIS corpus, one of the first available spoken dialogue cor-
pora, and the COMMUNICATOR corpus, which can be considered as the
successor to ATIS), and finding information about specific points of inter-
est in a city, such as landmarks (Gruenstein and Seneff 2007; Gruenstein 160
2008), or restaurants, including how to reach them (Bangalore and Johnston
2009). The Let’s Go corpus (Raux et al. 2005; Black et al. 2011) is a collec-
tion of user interactions with a telephone-based information system for the
Pittsburgh area bus system, which answers questions about the current status
of buses and bus routes. As we discussed, neither ATIS nor any of the other 165
corpora include trip-planning requests of the sort we are interested in, com-
prising the complex constraints we discussed earlier. Hence, we set out to
collect a new corpus of urban trip-planning requests.

In order to guide our focus, we solicited requests from two sources, the
first being a group of graduate students who have interests in both com- 170
puter science and transportation, the second being friends and colleagues
not affiliated with the program (instructions are included in Appendix A).
The responses ranged from nearly trivial (e.g., get me home) to complex
planning situations expressed via multiple sentences that required getting
multiple users to a single destination—while constraining the arrangement 175
to an entire paragraph of additional details. Half were requests for trip plans
with a few different constraints, and we decided to focus on those. The lan-
guage used ranged from fully grammatical sentences, as in Example (4a), to
short fragments, as in Example (4b).

4a. Leaving from 1000 W. Taylor St., what is the fastest way to my house for less 180
than $7?

4b. train home by 7:00 p.m.

This collection of requests showed us that NL2TRANQUYL should allow
language that is not grammatically trivial. The main clause can be a com-
mand, a question, or a fragment. The request can include coordinate and 185
subordinate clauses, specifically preposed gerundive adjuncts, and relative
clauses. Example (5b), below, includes all three types of clauses and is
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successfully processed by NL2TRANQUYL. We note that the relative clause
in turn includes two conjoined clauses, as well as negation in the first
conjunct. As far as noun phrases (NPs) are concerned, they can be con- 190
joined, modified by relative clauses, include numbers, or comparative and
superlative expressions. Example (5a), which is also successfully processed by
NL2TRANQUYL, includes a complex NP whose head is route, which is mod-
ified by two relative clauses; one other NP includes three conjuncts: a bank,
grocery, and bar , and one other NP includes a comparative: fewer than 7 trans- 195
fers. Prepositional phrases (PPs) are also used and processed successfully,
although they create some problems when the main clause is a fragment, as
we will discuss in the section “Performance and Error Analysis.”

5a. Is there [NP a transit route to my home [rel-clause that stops at [NP a bank,
grocery, and bar]] [rel-clause that arrives before 5:00 p.m. and has [NP fewer 200
than 7 transfers?]]]

5b. [ger-adjunct Taking the least expensive path to my apartment,] does there
exist one [rel-clause that doesn’t cross a river and still arrives no later than
7:00 p.m. with 99% certainty on that time]?

In addition to the language that was of interest to the users, the most sig- 205
nificant constraint was the expressive power of TRANQUYL. The language
was designed for trip planning, therefore, requests beyond that scope were
not of interest for this work—all of the requests handled are either explic-
itly or implicitly asking for a trip plan. Some requests that ask for different
types of information, for example, find the nearest pharmacy,2 are looking for a 210
location, but a trip to that location implicitly answers the question of where
the place is. In the evaluation, we will show that these implicit requests are
successfully processed by NL2TRANQUYL.

Beyond the fact that all requests must be looking for trips, it is important
to understand what vocabulary can be used and what types of trip requests 215
can be expressed. The expressive power of TRANQUYL is greater than that
which NL2TRANQUYL can process. Many of the details on the understood
language are presented in the following sections, but some can be intro-
duced here. The vocabulary understood corresponds to the concepts in the
ontology, which is explained in section “The TRANQUYL Ontology.”. Some 220
of the concepts in the ontology are purely for organization purposes and
are not directly usable in a request. Some concepts, such as times (e.g.,
“4:30 p.m.”) and addresses are treated as instances of the concepts and
are found via regular expressions. NL2TRANQUYL has no set grammar,
but there is an implicit grammatical assumption. The software relies on the 225

2This request is one of the 12 implicit requests evaluated separately from the main evaluation
corpus, seesection “Implicit Requests”.
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Stanford Parser (Klein and Manning 2003), which in turn uses a probabilis-
tic context-free grammar of English. Ideally, the input to NL2TRANQUYL
would be of the same grammatical form as understood by the Stanford
Parser, but there is no enforcement mechanism in place. Some of the work-
able sentence formations can be seen in the corpus of test requests to be 230
described in section “Evaluation.”.

RELATED WORK

NLIs have a long history in the NLP and databases communities. Our
work continues in that tradition, but addresses a new domain (trip planning)
and attempts to address some of the many problems of previous NLIs: lim- 235
ited vocabularies, strict grammars, and poor understanding of the system’s
limits have long plagued NLIs (Androutsopoulos, Ritchie, and Thanisch
1995). The interest in NLI as applied to trip planning is also prompted by the
proliferation of car and portable navigation units. People are unable to type
or use a mouse while driving (or certainly are not allowed to), which limits 240
system input to either times when the vehicle is stopped (which is enforced
by some systems) or voice.

Modern NLIs have taken a number of approaches to improve usabil-
ity: interactive query formation (Rosé and Lavie 2000; Yunyao, Yang, and
Jagadish 2005), clarification dialogs (Kaufmann, Bernstein, and Zumstein 245
2006), the use of WordNet to boost vocabulary (Moldovan et al. 2007; Lopez,
Motta, and Uren 2006), and statistical methods to improve disambiguation
of ambiguous terms (Meng and Chu 1999). NLIs have been increasingly
applied to ontologies (Wang et al. 2007; Bernstein, Kaufmann, and Kaiser
2005; Dzikovska et al. 2008), especially in the domain of question answering 250
(Garcia, Motta, and Uren 2006; Lopez, Motta, and Uren 2006; Moldovan
et al. 2007; Ferrández et al. 2011). In some cases, only shallow NLP tech-
niques are used, and partially formed requests (i.e., sentence fragments) are
allowed (Kaufmann, Bernstein, and Fischer 2007). This approach relies on
keywords alone rather than grammatical relations. When more sophisticated 255
approaches are proposed such as in the QALL-ME framework (Ferrández
et al. 2011), the system identifies NL question patterns and associates them
with database (DB) query patterns; it then identifies a minimal subset of all
the defined mappings. A new question, is first transformed into a pattern,
then a textual entailment engine is used to map the discovered pattern into 260
one of those contained in the minimal subset, and hence, onto a DB query.
Needless to say, if the user’s question does not fall into one of the predefined
patterns, the system will fail to return an answer, which happens in 9.73% of
the user questions in the evaluation presented in (Ferrández et al. 2011)
(another 10.62% of failures are attributed to the entailment engine failing 265
to finding the correct entailed patterns in the minimal set).
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A different take on NLIs comes from the recent impetus on personal
assistants (PAs) deployed on mobile platforms, fueled by the success of Apple
Siri and Google Voice (Neustein and Markowitz 2013). Meisel (2013) notes
that PAs can attempt to assist the user in every realm of life, as Siri attempts to 270
do with mixed success, or can be composed of specialized subcomponents,
such as an ITA such as NL2TRANQUYL. Some specialized PAs for urban
navigation had been devised for older mobile hardware, such as MATCH for
the Fujitsu PDA (Johnston et al. 2002) and City Browser (Gruenstein and
Seneff 2007) for a web interface accessible on mobile devices. These two 275
projects provided multimodal (in terms of input) navigation of urban areas,
however, they largely dealt with finding resources rather than planning trips
or itineraries.

Meisel (2013) notes that recognizing speech processing is only one cru-
cial component of a PA, with the NLP component being equally crucial. 280
Hence, in many ways, NL2TRANQUYL is situated between the aforemen-
tioned works, be they NLIs to static applications, or PAs. We focus on
the NLP component and use WordNet as a straightforward method of
expanding the vocabulary; additionally, we allow for other word forms (i.e.,
colloquial annotations) to be captured in the TRANQUYL ontology. The use 285
of the ontology resource in our manner is unique in the literature we have
seen. It guides NL2TRANQUYL in interpreting what the concepts are and
how they are related. In most systems, the software is either querying the
ontology or simply using it as an additional lexicon.

Similarly, our system functions with fully grammatical sentences as well 290
as some ungrammatical sentences and fragments. This is because we make
use of the constituency parse only as it concerns nodes, and hence con-
cepts, of interest. The relations between concepts are inferred as based on
the dependency parse, which is generally more stable across changes in syn-
tax. Another difference from previous work is that the intended users of 295
NL2TRANQUYL are not experts who are using an NLI to access their data
but rather average people accessing information in a method that is familiar
to them.

The work by Dzivoska et al. (2008) is particularly relevant to our efforts.
It presents a systematic approach to linking lexica and ontologies to port 300
dialogue systems to new domains. Specifically, they define formal mapping
rules that link the lexicon to what they call the logical form (LF) ontology,
used in parsing and semantic interpretation, to the knowledge representa-
tion (KR) ontology that represents the domain. Additionally, they describe
computational methods that take those mapping rules and propagate their 305
coverage as appropriate. They show that the developer effort in porting
a parser from one domain (e.g., the logistics of moving cargo for a plan-
ning system) to another (e.g., basic electronics and electricity for a tutoring
domain) is much reduced, but that the parser still performs very well. Our
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work differs from theirs in that, to the extent possible, we focused on reusing 310
available NLP tools such as the Stanford Parser (as far as we know, the parser
by Dzikovska et al. 2008 was never made available). If we were to port our
work to a different domain, we would make use of their ideas to support the
mapping (and their software, if it were to become available).

Whereas the mapping rules in Dzikovska et al. (2008) are written 315
by hand, much recent work focuses on learning semantic representa-
tions. Some of this recent work connects semantics and the world state,
through either perceptual or action execution contexts (e.g., Zettlemoyer
and Collins 2009; Liang, Jordan, and Klein 2009; Chen, Kim, and Mooney
2010; Branavan, Zettlemoyer, and Barzilay 2010; Branavan et al. 2012a; 320
Branavan, Silver, and Barzilay 2012b; Liang, Jordan, and Klein 2013). The
work closest to ours (Thompson and Mooney 2003; Kate and Mooney 2007;
Muresan 2008) applies learning the semantics of language interfaces to
databases, or to question-answering applications. The evaluation on the
GEOQUERY application from Thompson and Mooney (2003) and Kate and 325
Mooney (2007) is similar in size to ours, because they evaluate their sys-
tem on 250 requests (our formal evaluation, described later in this article,
consists of 162 requests; an additional 43 requests were informally eval-
uated). The most significant difference between our work and previous
work on learning semantic representations is that we defined the seman- 330
tic representation itself, whereas they start from a preexisting definition.
For example, in Thompson and Mooney (2003), requests are paired with
their Prolog representations; in Muresan (2008), examples are annotated
with domain-independent semantic interpretations (the application is med-
ical question-answering). Even if later work by these research groups has 335
moved away from supervised approaches given how costly it is to develop
the training data, their foundations remain in precisely specified represen-
tations. We did not have a predefined language; we invented the query
language itself, TRANQUYL. Hence, it is foreseeable that in future work,
once TRANQUYL has been further validated in the larger project, we could 340
investigate learning semantics either from an annotated corpus of language
requests and their TRANQUYL representations, or in a semisupervised
or unsupervised fashion from, e.g., language requests, their answers, and
partial traces of how the TRANQUYL queries were built.

Other related work concerns transportation applications proper, such as 345
those studying the best type of interface between drivers and their intelligent
vehicles; e.g., the best combination of input–output modalities (Bernsen and
Dybkjær 2002; Buehler et al. 2003; Coletti et al. 2003; Geutner, Steffens, and
Manstetten 2002; John et al. 2004; Salvucci 2005). Of these, the closest to
our work describe the VICO project (Coletti et al. 2003; Geutner, Steffens, 350
and Manstetten 2002), aimed at developing a car assistance system for access-
ing tourist information databases and obtaining driving assistance. However,
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they focused on understanding speech rather than on understanding com-
plex requests, which are, in turn, translated into a query language. The Let’s
Go project (Raux et al. 2005; Black et al. 2011) is a call-in information sys- 355
tem for the Pittsburgh-area bus system, which answers questions about the
current status of buses and bus routes. The system is dialogue based, but is
restricted to a much narrower range of question types.

MODELS AND RESOURCES

We start the presentation of our work by briefly discussing the 360
TRANQUYL DataBase Language and the attendant Query Language and
the transportation ontology we developed. Developing a new DataBase
Language was a crucial component of our effort but is not a focus of this
article; further details on TRANQUYL can be found in Booth et al. (2009b)
and Booth (2011). 365

The TRANQUYL DataBase Language

We define a transportation network to be a tuple U = (M, F, L, G) where
M is a set of modes, F is a set of facilities, L is a set of attributes, and G is a
labeled, directed, multigraph. The set M = {pedestrian, auto, bus, urban rail,
suburban rail} corresponds to the modes of transportation available in the 370
network. The set of facilities F represents the classes of facilities (e.g., gro-
cery store, restaurant, bank) available on the transportation network. The
set L denotes the attributes (e.g., length, name, mean speed) for the edges
in the network.

For each m ∈ M we define a set, edge_attributesm ⊆ L, that describes 375
attributes of the edges in the graph of that mode. Different modes have
different attributes. For example, run-id (a numeric identifier of each run
of a bus) is an attribute of the bus mode, but is irrelevant for the pedes-
trian mode. Each edge has values for the attributes specified by the mode of
the edge. Similarly, we define a set of attributes, vertex_attributes ⊆ L, that 380
describes the attributes of vertices. Vertices are not associated with a mode,
therefore all vertices have the same attributes vertex_attributes = {name,
geometry, facilities}. The name represents some real-world name of the ver-
tex. For example, it could be the name of the intersection of streets, the
name of the train station, etc. The name value may be null if there is no 385
appropriate name available. The geometry of a vertex represents its real-world
geometry (e.g., the x,y coordinates on a map3). Finally, facilities represents

3A simple x,y coordinate is unlikely to suffice for a true representation of a vertex. The actual
transportation system has objects (e.g., roads and bus stops) that have extended spatial regions. Because
vertices are assumed to exist as connected points between modes, they must have a spatial extent. This is
why we define a generic geometry.
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the set, f ⊆ F , of classes of facilities (e.g., grocery store, restaurant, bank)
present at the vertex. We assume that the facility is available at the given
point in time if it is present in the set. 390

We define the graph as G = (V, E , �), where V is the set of labeled ver-
tices and E is a set of labeled edges. Each edge is defined as a 4-tuple (v1,v2,
m, φm), where v1, v2 are the endpoints of the edge, m is the mode label of
the edge, and φm is a function that maps the attributes defined for the mode
to values. Two important attributes of edges are mean speed, and speed vari- 395
ance. Using these, TRANQUYL enables the specification of uncertainty in
the language.

For each vertex v and vertex attribute x, � specifies the value of attribute
x for vertex v. Note that this defines a single unified graph. Edges of multiple
modes may be incident on the same vertex, and, in fact, this is how the 400
transfer between modes is modeled.

Figure 1 contains a simplified graph representation for a very small net-
work. It is meant to aid the reader’s intuitive understanding of the model
rather than contain every detail. It shows how multiple pathways connect to
a single connector. Note that the road and freeway pathways show only a 405
single edge between connectors—in the model, each of these edges is rep-
resented multiple times because it is a time-expanded graph. Similarly, the
railway pathway and train route have been combined.

We define a leg to be a sequence of alternating vertices and edges starting
and ending with a vertex where all of the edges have the same name, mode, 410
and if available, run-id. For each edge in the leg, its start vertex is the same
as the vertex preceding the edge in the leg; the end vertex of an edge is
the same as the vertex following the edge in the leg. We define the departure
time of a leg to be the departure time of its first edge; similarly, we define its
arrival time to be the arrival time of its last edge. A trip is a sequence of legs, 415
where the beginning vertex of each successive leg in the sequence is same
as the end vertex of the preceding leg, such that the departure time of each
subsequent leg is greater than or equal to the arrival time of the previous leg.
We define the departure time and arrival time of a trip to be the departure
time and arrival time of the first and last leg, respectively. 420

We define a transfer to be a vertex shared by two different legs in the same
trip. The transfer is intermodal if the modes of the incoming and outgoing
legs are different, and intramodal if they are the same.

Querying for Trips: The TRANQUYL Query Language

Our query structure builds on the standard “SELECT, FROM, WHERE” 425
structure of SQL. We retain the same base syntax and structure but extend
it in two important ways.
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FIGURE 1 An example network graph.

First, to query trips we introduce an operator

ALL_TRIPS(vertex, vertex) → TRIP

that accepts two vertices (the first being the origin, and the second, the des- 430
tination) as input and returns a relation of type trip. More specifically, this
operator returns a nonmaterialized relation of all possible trips between the
origin and destination vertices. It acts on the network graph as defined by
the vertex and edge relations.

In addition to this operator and relation we introduce four new clauses 435
that allow further specification of the parameters of the trip:
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WITH MODES: A list of the modes to be allowed in the trip (see the set
M of five modes mentioned in the previous section).

WITH [ORDERED] STOP_VERTICES: A set of vertices (that may be
ordered) to be included in the trip; they will be used to specify intermediate 440
stops.

WITH CERTAINTY: A specified minimal probability that the trip can be
executed as specified.

OPTIMIZE: A criteria by which the trip is optimized (e.g., distance,
time, reliability, cost), which is specified with the MINIMIZE or MAXIMIZE 445
keyword.

With these new clauses, we define a generic query structure, which
allows for the full description of trips in an urban transportation system in a
relational-like syntax:

<SELECT ∗ FROM> 450
<ALL_TRIPS(origin, destination)>

<WITH MODES>

<WITH STOP_VERTICES>

<WITH CERTAINTY>

<WHERE> 455
<OPTIMIZE>

The following is one example of an NL request and its TRANQUYL
equivalent, as computed by NL2TRANQUYL:

6. Get a route to my office that stops at a florist and my doctor using transit

SELECT ∗ FROM 460
ALL_TRIPS(user.current_location, user.office) AS t

WITH MODES bus, rail, pedestrian
WITH STOP_VERTICES s0, s1
WHERE “Florist” IN s0.facilities

AND s1 = user.doctor 465
MINIMIZE DURATION(t)

The request is looking for a trip (a.k.a., a route) between two loca-
tions as represented by the current location, and the user’s office, the
latter as specified in the user profile. The query specifies that the bus, rail,
and pedestrian modes are allowed (that is how transit is defined in the 470
ontology); and that the path of the trip will be minimized with respect
to its duration (this is a default for the current speaker). Furthermore,
it requires that a florist and the user’s doctor be included at some
point along the way—specified by the Florist IN s0.facilities and
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s1 = user.doctor statements. The variable s0, being a node, has an 475
attribute that lists the facilities it possesses (i.e., the types of resources a user
may find interesting: banks, grocery stores, pharmacies, as discussed in the
previous section); however, the variable s1 is equated with user.doctor
(also specified in the user profile) because the speaker is requesting a stop
at his/her doctor’s office, not at any doctor. 480

We will provide further details on how a TRANQUYL query is built in
section “Query Generation.”.

The TRANQUYL Ontology

We developed an ontology as a way to model and store relevant informa-
tion for our system. On one side we have a database schema that our output 485
query must follow, and on the other we have a naïve user who wishes to
issue a request against said database without understanding the underlying
schema. We use an ontology to bridge the representational gap between the
user and the database.

The ontology models the user and the concepts found in TRANQUYL, 490
along with the interactions between them. For the transportation aspects,
this includes concepts such as a trip, places, regions, time, metrics (e.g., cost,
distance), and modes and how they are interrelated. A small subset of the
80 concepts in the hierarchy is shown in Figure 2. The user aspects define
personal preferences such as the most common mode, preferred metrics, 495
and profile facts such as current location, home, and work addresses. The
more knowledge the user profile contains, the less information the user must
explicitly state for any given request.

We chose to develop our own ontology because existing ontologies did
not fit our specific needs. High-level ontologies such as SUMO (Suggested 500
Upper Merged Ontology 2011), OpenCyc (OpenCYC 2011), or REWERSE
(Brunner, Schulz, and Weigel 2006) contain some information about geog-
raphy and/or transportation systems, but the focus of these ontologies is
general knowledge, and hence, they are much too broad for our purposes.
A few transportation-specific ontologies exist, but most of them focus too 505
heavily on the mechanics of the transportation network (Fonseca et al. 2000;
Lorenz, Ohlbach, and Yang 2005; Benslimane et al. 2000; Teller et al. 2007).
Our research is not focused on how the transportation system is built or orga-
nized, beyond the minimum necessary to guide users through it. Modeling
how freight interacts with the road network and shipping ports is far beyond 510
our scope, and would only serve to introduce noise into the model. Very
few ontologies focus on personalized route-planning systems. One was pro-
posed by Niaraki and Kim (2009), however, their ontology is used to make
decisions on which optimization and selection criteria are to be used in
route planning. It does not model the resources in the network or the user’s 515
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FIGURE 2 A small subset of the 80 classes in the TRANQUYL class hierarchy.

interactions with them. Closer to our work, (Wang, Ding, and Jiang 2005)
proposes an ontology focusing on the urban public transport system, and
their query algorithm takes into account user constraints such as transfer
times, walking distance, and price. Clearly, this ontology is missing crucial
components of the urban network. Mnasser et al. (2010) and Marçal De 520
Oliveira et al. (2013) developed an ontology to support user travel plan-
ning. Like ours, their ontology contains information about route selection
preferences and potential resources in the network. However, none of these
ontologies were designed to facilitate the use of natural language.
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To summarize, some of these preexisting models were focused on the 525
minutiae of the transportation network, whereas we are interested in only
the highest level concepts in the ontology and how a user interacts with
them. Those very few that focus on user trip-planning are not concerned
with supporting the usage of natural language. Hence, we chose to develop
our own ontology from the ground up, which ties in some spatial and tem- 530
poral attributes and relationships missing from the transportation-specific
ontologies. Furthermore, we also use the ontology as a method to increase
the vocabulary understood by the system. The pertinent concepts (i.e.,
concepts that users will express rather than those used for organizational
purposes) have been annotated with additional lexical information. For 535
example, the concept train is labeled “train” in the ontology. Locally, our
urban trains are also known as “The L” (because most of these trains run
ELevated); therefore, we include a colloquial label denoting such. We also
annotate the concept with the relevant WordNet entry (with root word and
sense key): train%1:06:00. How this information is used will be discussed 540
in the next section. The small size of the ontology meant that manual
annotation was feasible and likely faster than implementing an automatic
method.

At this time, we do not use a reasoner in conjunction with the ontol-
ogy. We are using it as a knowledge model to guide the translation and as 545
a lexicon (via the lexical annotations) to improve the scope of language
understood. Currently, exploiting the more advanced aspects of ontologies
and the semantic web is beyond the scope of our research.

TRANSLATING NATURAL LANGUAGE TO TRANQUYL

In this section we present the NL2TRANQUYL system. The translation 550
from natural language to TRANQUYL occurs in several distinct steps, as
shown in Figure 3. The four steps are called filters because they attempt to
remove noise and remediate the lack of information. This could mean tak-
ing information present in the previous step and adding additional, useful
information to it or removing unnecessary information. The four stages cor- 555
respond to parsing, concept identification, concept attachment, and query
generation. The details of the stages, along with a running example, are
covered in the following three subsections.

Parsing and Concept Identification

The first phase of the translation from NL to TRANQUYL involves 560
parsing the input and identifying the key concepts. It begins by parsing
the input with the Stanford Parser (Klein and Manning 2003) in order to
obtain both constituency and dependency parses. For illustrative purposes,
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FIGURE 3 Overview of the NL2TRANQUYL translation pipeline.

example parses for the example request (7) are presented in Figures 4 and
5. This request is one of the simplest that NL2TRANQUYL successfully pro- 565
cesses, but we use it in this article for ease of presentation. We will discuss
more complex requests in section “Evaluation.”.

7. Can I walk to 300 W. Humboldt Blvd. by 4:00 p.m.?4

The algorithm in Figure 6 shows the high-level pseudocode for process-
ing an input request. The set N is formed by selecting the relevant nodes 570

4Although this sentence may show poor phrasing with respect to telicity, this construction was found
to be used by native English speakers in multiple instances. The sentence is implicitly asking for a path
to 300W. Humboldt Blvd., such that the user can walk there and arrive by 4:00 p.m. The understanding
is that given the current time, is there enough time before 4:00 p.m. to complete the trip? The inelegant
language underscores the ability of NL2TRANQUYL to understand imperfect input.
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FIGURE 4 Example constituency parse tree.

FIGURE 5 Example of dependency parse graph.

FIGURE 6 Algorithm 1: Parsing and concept identification.

among all those found in the constituency parse tree (cp). The relevant
nodes are defined as adjectives, adverbs, verbs, nouns, prepositions, and
simple phrases (adjective phrases such as least expensive, compound nouns
such as grocery store, addresses)—concepts that perhaps exist in the ontol-
ogy. In order to determine which concept in the ontology a specific relevant 575
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FIGURE 7 Algorithm 2: getOntologyConcepts.

node n ∈ N corresponds to, two approaches are taken: (1) comparing nodes
to concepts in the ontology (getOntologyConcepts), and (2) identifying spe-
cific concepts via regular expressions (getRegExConcepts). Note that the
dependency parse dep is not used at this point; it will be used later, when
concept attachment is addressed (see section “Concept Attachement”). 580

The first algorithm to extract concepts, getOntologyConcepts, performs
a pairwise matching between each node n and all of the concepts c in the
ontology (please see the algorithm in Figure 7).

getOntologyConcepts uses a set of metrics that evaluate two types of
matching. The first type of match (Table 1) concerns the text string con- 585
tained by the node n and the concept and colloquial labels associated with
the concept c; in turn, this type of match is evaluated via three kinds of
metric: a direct string match, stemmed match, and match-within-1 edit. The
second type of match (Table 2) is between the WordNet label associated
with the concept c and the look-up of the lemma associated with the node 590
n in the WordNet lexical tree (similarly to Budanitsky and Hirst (2006)).
Each match type/metric is associated with a score, and the scores for each
match type are added to the concept’s total score. The concept with the
highest score, subject to a minimum threshold, is selected as the concept
representing the node. The match criteria weights and minimum thresh- 595
old were determined empirically. A small corpus of 12 sentences was used.
Within those 12 sentences, there were 43 concept nodes. The weights and
thresholds were tuned in order to maximize the precision and recall for
those concepts. The minimum threshold value was determined to be .24.

600
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TABLE 1 Weights for String Matches

Target Concept c Distance Measure Weight

Concept Label Equal 1
Colloquial Label Equal 1
Concept Label Stemmed Equal 0.25
Colloquial Label Stemmed Equal 0.25
Concept Label Edit Distance: 1 0.15
Colloquial Label Edit Distance: 1 0.15

TABLE 2 Weights for WordNet Matches

Node n Relation in WordNet Weight

Lemma Synonym .25
Lemma Hypernym .05
Lemma Hyponym .05
Lemma+POS Synonym .50
Lemma+POS Hypernym .10
Lemma+POS Hyponym .10

Match types and their corresponding weights are found in Tables 1
and 2. Table 2 refers to how the WordNet entry located via lookup on
node n relates to the WordNet annotation on the concept c in the ontol-
ogy. For example, suppose our request asks, Are there any trains home after
12 a.m.? For the candidate concept, train, in our ontology, the associated 605
WordNet entry is train%1:06:00. For the WordNet lookup, we will index
WordNet twice: simply via the lemma train, or via the lemma with its POS
tag, NN in this case. We then assess the relationship between each of the
synsets returned by WordNet and the WordNet annotation for the con-
cept c. Because there are multiple senses for some words (e.g., for train, 610
WordNet returns 17 different senses) using the part of speech of the lemma
(as returned by the Stanford Parser) allows for a better match: e.g., for
train, only six senses are returned for NN, one of which is the sense anno-
tated on the concept train in the ontology. The second algorithm to
extract concepts, getRegExConcepts extracts several other concepts that are 615
instances of concepts contained within the ontology, specifically: instances
of times, addresses, and other numeric values such as costs (e.g., $3.50), and
certainty specifications (e.g., 50%). These concepts are identified using regu-
lar expressions, and although specific instances are not in the ontology, the
results can be associated with the appropriate concept in the ontology (e.g., 620
$3.50 is mapped to the concept cost) (we don’t include getRegExConcepts’
pseudocode because it is very simple).

The complexity of the Concept Identification component is dominated
by the getOntologyConcepts algorithm. It is O(n ∗ c), where n is the number
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of nodes extracted from the parse tree and c, the number of concepts 625
in the ontology. Because both n and c are below 100, this is not prob-
lematic. Because n depends on the size of the parse tree, which, in turn,
depends on the length and complexity of the input requests, we do not
foresee n increasing substantially, because our inputs are already complex
enough (see section “Evaluation”). The situation is different for c, the num- 630
ber of concepts. As the ITA within which our work is situated gets further
developed, it will assist users with different types of requests (e.g., tourist
information); the ontology will then obviously need to be expanded. Better
indexing and search techniques for the ontology will then become essential
(Sharman, Kishore, and Ramesh 2007; Staab and Studer 2009). However, 635
these are beyond the scope of the current work.

Continuing with the example request of Can I walk to 300 W. Humboldt
Blvd. by 4:00 p.m.?, the system will identify two types of concepts in the
ontology: pedestrian as a mode of transportation, and by as a temporal rela-
tionship; and two instances of concepts in the ontology, 300 W. Humboldt 640
Blvd. and 4:00 p.m.. Note that the concept labels do not exactly match their
representation in the input sentence, which attests to the generality of the
mapping. However, the ontology-concept-match criteria were selected based
on the information contained in the model. The ontology provides only the
following information: concept label, colloquial annotation, and WordNet 645
annotation. It was imperative that the most information possible be drawn
from these labels.

Concept Attachment: Knowledge Map Generation

After we have identified the concepts in the request, it is important
to determine how they are related. We use the dependency parse (dep in 650
Figure 6) and three sets of strategies, guided by the ontology, to generate
a knowledge map. This map is effectively a subgraph of the ontology. The
previous step gave us the subset of concepts in the ontology that we are con-
cerned with, and in this step, we determine how they are interrelated. Before
describing the procedure, we present an example knowledge map in order 655
to illustrate our objective. Once again we use the request, Can I walk to 300 W.
Humboldt Blvd. by 4:00 p.m.?

Each request contains two key concepts, user and trip, which are central
to the problem of trip planning. Branching off from these two concepts are
other supporting concepts within the ontology. The only concepts explicitly 660
mentioned in the input request are the four instances (rounded rectan-
gles) in the graph. The explicit relationships in the ontology tell us how
the instances might be related. In the remainder of this section we briefly
discuss how we build the knowledge map and in the following section we
discuss how it is used to generate the final TRANQUYL query. 665
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In generating the knowledge map, our first sources of information
are the parses for the input request. Of course, well-formatted input
increases the likelihood that the parses are accurate. Though, even with well-
formatted input, the constituency parse can vary dramatically depending on
the phrasing of the request. In our experience, the dependency parse is 670
much more stable across sentence formulations. Unfortunately, we might
not receive well-formed input, so we do not rely on parses alone. If the parse
trees do not provide sufficient information, we resort to vicinity in the input
request.

The high-level pseudocode for the knowledge map generation is found 675
in Figure 9. Ideally, all of the identified concepts fit nicely into the ontol-
ogy in unambiguous ways—in that case, the map is built by simply following
the predefined relationships. In general, there are three primary tasks in
building the map: identifying personal references, aligning modifiers, and
determining which data are missing. 680

Identifying Personal References

Recall that the requests NL2TRANQUYL is able to process at the
moment concern only the user who is issuing the request. Whereas this vastly
simplifies processing referring expressions, we still need to identify whether
the user is using personal references—such as my bank, the bank, or a bank. 685
If a possessive is explicitly present in the input request, it will be directly
identified in the dependency parse, which will return a dependency of type
possessive that points to the node in question. The concept that corresponds
to the node will have been identified by the means discussed in the previous
section. For requests in which an explicit statement of possession has not 690
been made, the ontology will be consulted. Based on knowledge of referring
expressions (Webber 1978; Hirst 1981; Prince 1981), definite noun phrases
such as the bank are likely to refer to resources specific to the user;5 indefinite
noun phrases such as a bank or any bank will instead be satisfied by any bank.
This is implemented by the first FOR loop in Figure 9. If a resource is speci- 695
fied, via either a possessive or a definite description, we check whether it is of
type Personal : in the ontology, the concept “personal,” which many concepts
inherit, is used to denote that some term or object can be a personal refer-
ence, such as a bank or a florist (as opposed to a train). In this case, the user’s
profile is checked to see whether he/she has a preferred instance of that 700
resource. If so, the generic concept is replaced with the specific instance.
The generic concept will be kept if it is not a definite or a possessive, or if no

5NL2TRANQUYL does not conduct a dialogue with its users yet, and we do not maintain any model
of discourse entities; hence, the function of definite NPs as referring to entities previously mentioned in
the dialogue is not accounted for.
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FIGURE 8 Example of knowledge map.

specific instance is found. This could happen even with an explicit possessive
if, for example, a user did not complete his/her profile—i.e., the user says
my bank but no bank is specified in the user profile. 705
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FIGURE 9 Algorithm 3: knowledge map generation.

Modifier Alignment

Next, we determine the correct modifier alignment (the two FOR loops
in the middle of Figure 9). We must understand which concepts are modi-
fied by other concepts. Generally, adverbs, adjectives, and prepositions are
modifiers. Some concepts (e.g., cost) have the potential to modify more 710
than one concept (e.g., an inexpensive restaurant vs. an inexpensive trip).
If available, we use the modifier relations returned by the dependency
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parser. If not, we map back from concept c to the node n that was matched
to it, we expand a window w around node n in the original sentence, gather
the corresponding concepts cw, and choose the concept cw[i] that is closest 715
to c, if it exists.

Missing Information

Finally, we look for what we don’t know—constraints and values that
are missing from the request but are required in order to build a proper
query in this domain (bottom of Figure 9). We know that we are look- 720
ing for a trip, so we check the ontology and determine which of the
required concepts associated with a trip have not been found yet (essen-
tially, origin and destination). Similarly, if we have identified concepts that
are not associated with any other, we can determine which concept in the
ontology could anchor them. After the missing components are identified 725
(if possible), the knowledge map is passed on to the query generation
step.

Query Generation

The final step is generating the TRANQUYL query using the knowledge
map. We begin with the generic TRANQUYL query structure, discussed in 730
section “The TRANQUYL Query Language.” and fill in the appropriate val-
ues. To continue with our illustrative example, the TRANQUYL query for
our running example, Can I walk to 300 W. Humboldt Blvd. by 4:00 p.m.? is as
follows,

SELECT ∗ FROM 735
ALL_TRIPS(user.current_location, 300 W. Humboldt

Blvd.) AS t
WITH MODES pedestrian
WITH CERTAINTY .78
WHERE ENDS(t) ≤ 4:00 p.m. 740
MINIMIZE DURATION(t)

In this case, the SELECT clause contains a call to the ALL_TRIPS
operator, which returns a nonmaterialized set of tuples of all of the trips
between the user’s current location and 300 W. Humboldt Blvd. The WITH
MODES clause specifies that the trip may use only the pedestrian mode. 745
Furthermore, the trip must be completed by 4:00 p.m. and the software
made the decision to use the user’s default optimization metric of duration
because none was found in the input request.
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The minimum requirement for a well-formed TRANQUYL query is that
it contains a SELECT clause with a call to the ALL_TRIPS operator, and a 750
WITH MODES clause (possibly filled with a default value). The criteria for
generating each of the required and optional clauses are as follows:

SELECT: Fill in the origin and destination in the ALL_TRIPS operator
using the values found in the knowledge map (see Figure 8, the Origin and
Destination attributes of the Trip concept). If the origin is unspecified, use 755
the user’s current location as the origin.

WITH MODES: List the modes found in the request, pedestrian
in the example above. For the earlier example (6) whose correspond-
ing TRANQUYL query was presented in section “The TRANQUYL Query
Language”, transit was expanded to the appropriate modes it includes. If no 760
modes are listed, use the preference in the user profile.

WITH STOP_VERTICES: If an intermediate node is required (e.g., in
the case of visiting a facility), add the variable and pass the variable name
onto the WHERE clause generator. For Example (6), two variables are
generated, s0, s1. 765

WITH CERTAINTY: If there is one or more temporal constraint, include
the clause and specify the required level of certainty. The value can be found
in the request or the user’s profile, as in the example shown. By design,
only temporal constraints are assumed to be subject to uncertainty: spatial
constraints are guaranteed to be satisfied (i.e., probability of 1.0), hence, this 770
clause is included only if an explicit temporal constraint is included.

WHERE: Include all of the spatial, temporal, transfer, cost, facility, and
other constraints that have been specified and are included in the knowl-
edge map. If a facility is a personal reference, use the appropriate value
from the user’s profile. For this example, a temporal constraint is added. 775
For Example (6), two intermediate stops are specified, with one (the doctor)
being read from the user’s profile.

OPTIMIZE: If a trip optimization metric is found in the knowledge
map, generate the appropriate statement, else use the default from the user
profile—DURATION in our example. 780

We have shown examples of temporal and resource constraints on trips,
but there are a few more to mention in detail. The first are constraints
(inclusive and exclusive) on geographic regions. The user can issue requests
such as

8. I want to walk to home through a park, 785

where a park is of type spatial extent in the database. In section “Evaluation”,
we will show the TRANQUYL query for a request that includes one such
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constraint. The user is also able to place constraints on the number of trans-
fers, monetary cost of the trip, and use additional optimization metrics (e.g.,
reliability). 790

Although it is unlikely to be used often in practice, we include the abil-
ity to include explicit constraints on the probability of a trip fulfilling the
temporal constraints. As mentioned previously, one of the key features of
TRANQUYL is that it models the underlying uncertainty in the transporta-
tion network. It is possible to explicitly state the certainty requirements in 795
natural language using our system, as in

9. Find me a way to the theater with transit that has the fewest transfers and arrives
by 8:30 p.m. with 95% likelihood

This constraint will generate the WITH CERTAINTY clause we discussed.
In the future we will explore the use of nonnumeric likelihood values (e.g., 800
very likely, absolutely) as they are likely more intuitive to users and could be
customized.

In all cases, the system looks for default or preferential values in the
user profile if some information is missing from the knowledge map. If the
information is not specified anywhere, the system can be set to use a system- 805
wide default setting or drop the statement entirely.

EVALUATION

In this section we present the evaluation of NL2TRANQUYL. First,
we introduce the procedure used, second, we present an evaluation of
system performance on three sets of requests: well-formatted and gram- 810
matical requests as collected from external informants (set A), gram-
matical paraphrases of the requests (set B), telegraphic or fragmented
requests (set C); we generated sets B and C. In all cases, the system per-
forms with high accuracy—that is, for the majority of the input requests
(80%), NL2TRANQUYL generates a completely correct translation into 815
TRANQUYL; the accuracy on individual statements in the TRANQUYL
queries is 94% (i.e., even when the translation of a request is not com-
pletely correct, most of the individual statements are). The evaluation will
also touch on processing the implicit requests mentioned in section “Natural
language Considerations”. We then present a discussion of an informal eval- 820
uation to identify shortcomings in the language scope and to direct future
work.

Because of space limitations, we are unable to include the test corpus in
this article: it can be found online.



886 J. Booth et al.

Evaluation Procedure 825

As noted, for example, in Jurafsky and Martin (2009), the best way to
evaluate the performance of an NL system is to embed it in an applica-
tion and to measure the end-to-end performance of the application. In such
extrinsic evaluations, various measures of dialogue quality, performance of
the users on tasks of interest, and user satisfaction are collected, and pos- 830
sibly combined via frameworks such as PARADISE (Walker et al. 1997).
However, such extrinsic evaluations are often not possible, as in our work
here, because the ITA in which NL2TRANQUYL is to be embedded is
not available yet; neither is an appropriate database. Hence, we conducted
an intrinsic evaluation, i.e., an evaluation independent of the application, 835
in which we evaluated the quality of the translations of NL requests into
TRANQUYL.

Even for an intrinsic evaluation, we faced an obstacle: the lack of any
standard corpus available for trip planning of the sort we are addressing in
our work. We discussed the lack of such corpus earlier, which necessitated 840
collecting our own corpus of requests. However, because those requests had
been used for development, they clearly could not be used for testing. It then
became clear that we needed to generate a second corpus of requests, with
their desired translations, in order to be able to compare the system’s out-
puts to the desired outputs. The desired outputs would need to be generated 845
with sufficient accuracy in order to provide a gold standard for system eval-
uation; to do so, human intervention was required. Hence, our evaluation
follows the paradigm of assigning to humans the same task that the system
has to perform, and evaluating the differences (if any) between the outputs
produced by the software and the human(s). Whereas the ultimate incarna- 850
tion of this type of evaluation would be the Turing test, it has been used on a
much smaller scale on a variety of language processing tasks, from informa-
tion retrieval (Will 1993), to natural language generation (Lester and Porter
1997) to machine translation (Vilar et al. 2006)

In order to perform the intrinsic evaluation, we developed a corpus of 855
162 test requests: 50 of those (which we call A requests) were generated inde-
pendently from us, 100 (B and C requests) were systematic variations on the
A requests that we generated; finally, we generated 12 additional requests (D
requests) to specifically test NL2TRANQUYL on implicit requests. As con-
cerns the set of 50 A requests, we solicited the input from three students 860
associated with the transportation research project. We provided a list of
requests that demonstrated the functionality of the system, as well as a back-
ground on roughly how the system worked, similarly to how we had solicited
the initial set of development questions (see Appendix A—the sentence, For
at least half of them, please make them multipart questions, was omitted in this 865
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case, and so were multisentence examples). They were instructed to gener-
ate new requests that included the different types of constraints and to order
them as they wished—adding and removing clauses freely, without worrying
about a specific structure. The three users were not allowed to write random
requests outside the scope of the system; this evaluation was designed to test 870
the system on what it should be able to process. They could fail by way of
grammar, complexity, or the use of synonyms. Hence, for this evaluation, we
spell checked the requests. Note that because the requests were provided
by email, the vast majority of spelling mistakes were automatically flagged—
other than one or two instances of easily confused real words such as “their” 875
instead of “there” or “its” instead of “it’s.” We also substituted occasional
generic names of facilities, such as acupuncturist, that were not one of the
24 classes of Resources existing in the ontology (Figure 2 includes only two
out of 24, restaurant and bank); our interest was not in assessing the coverage
of the ontology, but the performance of the translation pipeline. 880

On this set of 50 A requests, we pitted the NL2TRANQUYL software
against two humans: an expert and a novice. The goal of the test was to
assess whether the software would produce TRANQUYL queries semantically
equivalent to those produced by the humans. The novice user was a PhD
student in the department who had no previous knowledge of the details of 885
the TRANQUYL language. He was given a description of the language that
included the Backus-Naur Form (BNF), a list of the operators and parame-
ters, and ten example queries. His task was then to translate the test requests
from English into TRANQUYL. We selected a person unfamiliar with the
software and language in order to remove any potential bias due to prior 890
knowledge.

We also had an expert (the first author and designer of the lan-
guage) translate the requests. Given his knowledge of both TRANQUYL
and NL2TRANQUYL, he should be able to produce perfect queries. This
provides us with a true gold standard. We realize that the designer of the 895
language could have introduced bias, conscious or unconscious, into the
translations, because he knows how NL2TRANQUYL would translate those
requests. We believe this concern is assuaged because the queries produced
by the novice constitute a second unbiased corpus of translations. As we will
show later, the “novice” turned out to be a highly competent TRANQUYL 900
query writer (not surprisingly, for a PhD student in the database area).
By comparing how well the software performs with respect to the novice, in
addition to how it performs with respect to the expert, we obtain a measure
of performance for the system that is not tainted by potential bias. Even if the
software produces errors, we will show that its performance is comparable to 905
either of the two humans, the expert or the novice.

We briefly note that we attempted a second type of evaluation, this
one exploiting Amazon’s Mechanical Turk. We took our input requests and
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blindly ran them through the software system. The first author then trans-
lated back from the TRANQUYL query to an equivalent English request. 910
These natural language “outputs” were then paired with their corresponding
input requests. “Turkers” were asked to determine whether the two English
requests were equivalent. This attempt at evaluation failed for two reasons:
first, not many turkers took up the task; second, those few who did produced
very inconsistent results. Clearly, simply asking “do those two requests mean 915
the same” means different things to different people; as others have noted
(Stoyanchev, Liu, and Hirschberg 2012), turkers need to be provided with
very specific, focused tasks for their work to be effective. As a consequence,
we abandoned that attempt and we focused on the evaluation we are now
turning to describe. 920

Performance on Human Generated Requests (Set A)

As mentioned, the first test set (A set) contains a total of 50 requests.
They are translated into TRANQUYL queries that range in complexity from
1 to 10 necessary statements. A statement is a line in the output query that
contains generated values—line breaks for easier reading are not counted, 925
nor is “SELECT ∗ FROM” considered a separate statement if it appears on a
separate line. Consider a statement to be a unit of information independent
of its representation in the natural language input. That unit of information
may be expressed as anything from a single word to an entire clause, which
is why we judge complexity based on the necessary output in a formal 930
language.

The distribution of query complexity can be found in Figure 10.
Informally, we found that queries of length 5–7 statements were able to
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capture most reasonable trip requests. To illustrate the correspondence
between input request and number of query statements, the examples in 935
(10), following, list the number of statements in the TRANQUYL query
corresponding to the NL request (Example (10c) repeats the earlier
Example (5a)).

10a. 3 statements: Find the best way to my apartment
10b. 5 statements: What is the most reliable transit route to a restaurant that costs 940

less than $2.50?
10c. 10 statements: Is there a transit route to my home that stops at a bank, grocery,

and bar that arrives before 5:00 p.m. and has fewer than 7 transfers?

The set of 50 evaluation requests resulted in queries that collectively con-
tain a total of 296 necessary statements. In terms of raw accuracy, the system 945
achieved 96% in that it produced only 13 errors in total; the novice human
generated only three errors, for an accuracy of 99% for the 296 statements.
All of the system errors occurred within 10 of the requests, which means
80% of the requests were processed correctly. The novice processed 94%
of the requests correctly. Of those 10 requests in which NL2TRANQUYL 950
made errors, one had three errors, one had two errors, and the remaining
eight each had one error. Only three of the requests with errors had six or
fewer statements—meaning that errors generally occurred on longer, more
complex requests.

In addition to accuracy, we can calculate a measure of precision and 955
recall for different aspects of the query by using our atomic unit of a state-
ment. Precision and recall are appropriate metrics because a statement can
be wrong, or can be missing altogether. Tables 3 and 4 show where these
errors occur. Table 3 provides the details for which type of statement the
error occurred in, and Table 4 details the types of errors found within the 960
WHERE clause. We do not include a detailed analysis of the novice human,
because his three errors were all in the OPTIMIZE clause—making the
novice worse than the expert, but better than NL2TRANQUYL. It is inter-
esting to note that if we were to consider the novice as the provider of the
“gold-standard,” NL2TRANQUYL would apparently perform worse than in 965
comparison to the expert: the system does not make any mistakes on the
OPTIMIZE clause (see Table 3), but that’s where all the novice mistakes lie.
Hence, NL2TRANQUYL would make 16 mistakes with respect to the novice
query translations, for an accuracy of 95%. The types of errors chronicled in
Table 4 deserve further explanation. Each line represents a class of errors. 970
Temporal errors are errors that relate to temporal constraints in the WHERE
clause. The primary error was that of sign inversion (e.g., specifying that a
trip end before, rather than after, 8:00 p.m.). Temporal constraints were
the most missed type of constraint, i.e., they were omitted from the output.
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TABLE 3 Precision and Recall for Different Types of Statements (set A)

Precision Recall F-Score

Select (ALL_TRIPS) 0.95 0.95 0.95
With Modes 1.00 1.00 1.00
With Stop_Vertices 0.88 0.79 0.83
With Certainty 1.00 1.00 1.00
Where 0.94 0.90 0.92
Optimize 1.00 1.00 1.00
Cumulative 0.97 0.95 0.96

TABLE 4 Precision and Recall for WHERE Clauses (set A)

Precision Recall F-Score

Temporal 0.92 0.86 0.89
Facility 0.96 0.92 0.94
Geographic 1.00 1.00 1.00
Cost 1.00 1.00 1.00
Transfers 1.00 1.00 1.00
Cumulative 0.96 0.92 0.94

Facility constraints are those specifying that the trip include a certain facility 975
or resource along the way (e.g., stopping at the bank). One common error
was swapping an intermediate node with the destination node—this also
affects the precision and recall for the SELECT and WITH STOP_VERTICES
clauses in addition to the WHERE clause.

We find these results to be very promising. The overall accuracy is high 980
with respect to both gold standards: the true one, produced by the expert,
but possibly biased by his knowledge of the system; and the one produced
by the novice, which contains only three errors over 296 statements (inter-
estingly, these three errors all concern the OPTIMIZE clause, on which the
system doesn’t make any mistakes). NL2TRANQUYL errors are more preva- 985
lent in longer, more complex requests, which seem less likely to be issued
in real-world applications. We will provide an analysis of performance on
different types of syntactic constructions in section “Performance and Error
Analysis”, following.

Paraphrases and Fragments (Sets B and C) 990

In order to test the robustness of our system, we decided to systemati-
cally rewrite the first set of 50 test requests used in the previous evaluation.
To illustrate, we provide the following two examples of the alternative formu-
lations A/B/C. Query A is the initial request, B is the paraphrased rewrite,
and C is the fragmented rewrite. 995
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11a. A. What is the cheapest way to visit my bank, a bakery, and a gym on the way
to my office?

11b. B. Start by visiting my bank, a baker, and a gym and then go to my office for the
cheapest amount of money.

11c. C. cheapest way to my office after bank, bakery, gym 1000
12a. A. Can I drive to a bank not crossing a river while arriving no later than

5:45 p.m.?
12b. B. Arriving at a bank no later than 5:45, can I do it by driving and not crossing

a river?
12c. C. drive to bank not crossing river by 5:45 p.m. 1005

In each case, request B is rewritten in order to capture variability in how
requests may be asked. Short requests had additional clauses added even
if they were not necessary. Long requests had their clauses rearranged or
compacted. Where possible, we changed the verb tenses or used synonyms.
The fragmented requests leave behind mostly keywords—all of the impor- 1010
tant information for the query remains, but it is impossible to perform a full
parse of the input because it does not follow standard grammatical conven-
tions. The Stanford Parser does return outputs even in these cases, where
the root of the constituency tree is often marked as FRAG .

For this experiment, we compared the system output only to the cor- 1015
rect output; we did not involve another human translator. In each case, the
output for requests A, B, and C should be identical, and we already have
the correct output for each A query to compare against. Similarly, the com-
plexity of the requests remains the same in terms of number of statements
required—reinforcing the fact that query complexity is not tied to a specific 1020
representation of the request.

To begin, recall that, in terms of raw numbers, only 10 of the 50 A
requests had any type of error, for a cumulative total of 13 mistakes. For
the B requests, 14 of the requests produced errors, one resulting in a com-
plete failure (no output generated, the only instance across the 162 total 1025
requests), with the remaining 13 cumulatively resulting in 21 total mistakes.
The fragmented C requests fared worse: 24 gave rise to errors, for a total of
38 cumulative mistakes. Interestingly, half of the B requests corresponding
to the original 10 wrong A requests, are translated correctly; instead all but
one of the C requests corresponding to the original set of wrong A requests 1030
is translated incorrectly. These results show that our system is robust in han-
dling requests that are expressed in varying ways, including half of those
that use keywords and a telegraphic style. Whereas we do not rely on the
user to follow a prescribed grammar, expressing the sentence grammatically
still gives the best results. This shows the importance of actually employing a 1035
parser, as opposed to employing simpler approaches such as chunking.



892 J. Booth et al.

Implicit Requests (Set D)

As discussed previously, a request such as Find the nearest bank can be
interpreted as an implicit request for a trip that goes to the nearest bank—
even though the user was really asking only for the location of the nearest 1040
bank. Similarly, the request Is there a bus to my house after 10 p.m.? can be
interpreted as looking for a trip meeting a temporal constraint rather than a
binary yes/no response. In the earliest stages of development, we considered
allowing requests such as these to be answered explicitly and presented a sim-
ple heuristic for classifying requests based on what type of target they were 1045
for (e.g., a trip, resource, time) (Booth et al. 2009a). However, we decided
that focusing on trips alone actually provides greater functionality and accu-
racy. Indeed these requests often count as indirect speech acts, in which the
user’s intent goes beyond what can be inferred from the surface form of
the request (Austin 1962; Searle 1975). Computational models of how to 1050
reply to these questions with an extended response (or overanswering) rather
than with a yes/nohave also been studied for many years (Kaplan 1982; Di
Eugenio 1987).

Given the robust results presented in the previous sections, it is not sur-
prising that requests written like this can be processed correctly. Many of the 1055
requests in sets A and B are implicit requests to start with, especially if they
are phrased as yes/no questions. In a small test of 12 additional requests,
all were processed correctly. Among these 12 requests are the two requests
included earlier in this section; two others are Can I walk to the grocery store by
7:00 p.m.? and Where is the nearest gas station? 1060

Performance and Error Analysis

Whereas it is not possible to pinpoint the specific cause for each
error, we can draw some general conclusions, especially as concerns the C
requests. We will discuss A and B requests together, and C requests on their
own. 1065

As concerns the A and B request sets, most of the complex construc-
tions those requests contain are interpreted correctly. For example, four A
requests and five B requests are phrased as an expletive there question—see
the A requests in the earlier example (5a) and in Example (13), following,
and the B requests in the earlier Example (5b), and in Example (14), fol- 1070
lowing. Eight out of these nine requests are translated correctly. The one
B query which is wrong is missing intermediate stops, but this is likely due
to the conjoined NPs, rather than to the expletive there (see below for a
discussion of conjoined NPs).
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13. Is there a way to home that includes a pharmacy? 1075
14. Driving to work, is there a shortest path that doesn’t cross a river but also

includes a bank to stop at?

There can also function as a referential pronoun. Two occurrences of ref-
erential there appear in A requests, as in Example (15), following, where there
refers to (the location of) my doctor , and four in B requests. All of those are 1080
translated correctly, other than one B query (in which the mistake is with
regard to time, not to destination). We do not perform reference resolu-
tion other than for personal references (see section “Concept Attachment”).
Hence, when referential there is processed by the Knowledge Map algorithm,
no mapping concept is found, and there is ignored. Note that in all our exam- 1085
ples, referential there always refers to a concept present in the same sentence
(i.e., my doctor in (15)), which explains why it can be safely ignored.

15. Leaving from my bank, get the shortest walking path to my doctor that gets there
by 4:00 p.m.

Other pervasive constructions include preposed gerundive adjuncts, rel- 1090
ative clauses, and conjunctions. Preposed gerundive adjuncts are adjunct
clauses that appear at the beginning of the sentence and don’t have a main
verb, but a gerund, such as Driving to work in Example (14), and Leaving
from my bank in Example (15). Two A requests include these constructions,
one being Example (15); 31 B requests include them. The two A requests 1095
and 23 of the B requests produce completely correct output; for the eight
wrong B requests, in only three cases does the error concern a constituent
embedded in the adjunct. In those cases, the error appears to be due to
other factors, not the adjunct per se, as in Example (12b), repeated here:

16. Arriving at a bank no later than 5:45, can I do it by driving and not crossing 1100
a river?

This example produces the incomplete query included here, missing the
time and the negation as concerns crossing :

SELECT ∗ FROM
ALL_TRIPS(user.current_location, dStation) AS t, 1105

River AS R
WITH MODES Auto
WHERE “Bank” IN dStation.facilities
AND INTERSECTS(GEOMETRY(t), R.area)
MINIMIZE COST(t) 1110
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As concerns the omitted negation, this is due to an error in the depen-
dency parse tree, where not is not marked as a negation as usual, but simply,
as conjoined to driving , with driving and crossing linked by dep, the generic
dependency that the Stanford Parser uses when it cannot compute a more
informative one (De Marneffe and Manning 2008). As concerns the omit- 1115
ted time, almost all our requests, and specifically 47 triples of requests
A, B, C, include an explicit time expression, such as by 8:30 p.m., before
6 a.m., or no later than 7:00 p.m., for a total of 141 time expressions. Eleven
of those time expressions are omitted in the final query, for a recall of
92%. Three times this is due to the time expression not including p.m. 1120
or a.m., as in Example (16). In these three cases, the corresponding time
is not labeled as a num in the dependency tree, and hence, it is missed
by our getRegExConcepts algorithm (as described in section “Parsing and
Concept Identification”). In a corresponding pair of A/B requests (hence,
two cases), the explicit time expression by 6:00 a.m. is itself modified, as in by 1125
6:00 a.m. this morning . In this case it is our pruning method in the algo-
rithm in Figure 6 that is not able to deal with an NP, which is, in turn,
composed by two juxtaposed NPs. Interestingly in this case, the more suc-
cinct C request does not include this morning and is therefore processed
correctly—the only case in which a C request is correct, but the correspond- 1130
ing A and/or B request is not. The precision on the 130 temporal constraints
that are included in TRANQUYL queries, it is 96%, namely, 126 of those
temporal expressions are translated correctly. Mistakes refer to the tempo-
ral direction of the constraint, for example, translating Leaving no earlier than
7:00 p.m. as WHERE ENDS(t) < 7:00 p.m., instead of as WHERE BEGINS(t) 1135
> 7:00 p.m.

As concerns relative clauses (all introduced by that), there are 39 total
occurrences, of which 22 in 21 A requests (one A request includes two rel-
ative clauses), and 17 in B requests—Examples (3), (6), (5a), (5b) earlier
in the article include relative clauses. Of these, there are mistakes in two A 1140
requests and two B requests, and they concern missing intermediate stops,
which is what we turn to now. These are the most common mistakes across
all requests, and we discuss the cause behind most of the mistakes in the
C requests, following. For A or B requests, it is difficult to find a general
explanation for what the problem could be, because these errors occur in 1145
complex requests that include relative clauses, conjunctions, etc.; each of
these constructions could be the cause of the mistake. For example, consider
the pair of A and B requests in Examples (17a) and (17b); the translation
for Example (17a) does not include the intermediate stop bank, whereas the
translation for Example (17b) does: 1150

17a. What is the shortest path to drive to work that also goes to a bank and doesn’t
cross a river?
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17b. Driving to work, is there a shortest path that doesn’t cross a river but also
includes a bank to stop at?

Example (17a) is misparsed, with work analyzed as a verb, and that as a 1155
complementizer, as if it were . . . drive to say that . . . On the other hand, the
relative clause in Example (17b) is correctly parsed.

As concerns the C requests, the six requests that include a main verb are
all successfully processed, including Example (12c), even if the request is
otherwise ungrammatical, e.g., walk my house shortest. 23 out of the 38 total 1160
mistakes (60%) are due to missing all or some of the intermediate stops.
In 21 out of these 23 cases, the construction that triggers the failure is the
PP attachment expressing the intermediate stop, such as the PP after bank,
bakery, gym in Example (11c), as is resolved by the algorithm that computes
the Knowledge Map. When the query is fragmented, those PPs are parsed as 1165
modifiers of the source or destination of the trip (office in Example (11c)),
or of the trip itself (as in requests like transit to my house with bank, grocery).
In the algorithm in Figure 9, the body of the second for loop (for all Concepts
c ∈ map) looks for a path in the ontology between the two concepts involved
in the dependency that models the PP in question; if that fails, a connection 1170
is sought for all the concepts in the immediate vicinity of other concepts.
However, no connection is found between concepts that are all subconcepts
of Resource (see Figure 2), hence the PP is dropped from the mapping. The
same explanation applies to four additional cases such as restaurant before
5 p.m. in which the temporal PP is interpreted as a modifier of the desti- 1175
nation, as opposed to modifying the main trip, as in drive restaurant before
5 p.m. Finally, in two cases, certainty is just expressed as an apposition, as
in Example (18), and it is dropped as well (the apposition is probably the
cause of a second mistake in the translation of Example (18), because time
is omitted as well): 1180

18. transit to theater with fewest transfers by 8:30 p.m., 95% certain

Among other miscellaneous errors, the negation is not recognized in
Example (19), the only mistake on this rather complex request—perhaps
because the dependency between expensive and cross is only marked as a
generic dep. 1185

19. least expensive to my apartment not cross river by 7:00 p.m. with 99% certainty

Informal Evaluation

After performing a formal evaluation of NL2TRANQUYL, we decided
to pursue a further, but significantly less formal, evaluation in order to
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have a better understanding of the system coverage for potential real-world 1190
system deployment. The approach and focus was similar to that of our ini-
tial informative data collection. We solicited requests from laypersons with
no experience with our research. This was done by posting a “note” on
Facebook and asking random contacts to read the note and respond with
requests. The note contained a list of a dozen requests from the evalua- 1195
tion corpus as well as a brief description of the project and its goals. For
generating new requests, the contacts were told,

At this time, the system is really designed for trip planning (i.e., find a route
from an origin to a destination subject to various constraints). Below are
some examples of questions that my system does (or should) understand. 1200
It should give you an idea of the scope of the language that the system works
with. Feel free to play with the grammar and vocabulary a bit; not everything
is captured in the list below.

The use of Facebook for data collection is nontraditional, but provided
useful qualities. Unlike in our previous request collection steps, we wanted 1205
users who were not familiar with the work—which eliminates colleagues and
students in our research area. Facebook provided a free method to contact
many different users from many different backgrounds (race, age, location,
education).

We were interested in determining to what extent users would be able to 1210
use the system for their needs with only minimal training, as well as in what
directions we should take the project in the future. From this solicitation
we received 42 new requests. Of these, roughly one third were immediately
compatible with our system, with the caveat that certain landmarks needed
to be added to the ontology. At this time we do not have a comprehensive 1215
database of all possible locations of interest for each user, and the users were
allowed to ask open-ended questions.

Roughly another third of the requests would be understandable within
our framework with small extensions. These requests included new metrics
(e.g., cleanliness and safety of a route, presence of traffic control signals) 1220
and references to other users’ profiles (e.g., Find a route to Robert’s house.).
Some were requests looking for attributes of the trip (e.g., How long does it
take to walk to my house?)—the implicit trip request is understood but there
is no way to explicitly ask for the desired information. In addition to being
able to avoid spatial regions (e.g., parks), one user wanted to avoid specific 1225
roads in the network.

Although it might be easy to view these unsupported requests as short-
comings, we take a more optimistic approach. Our system design is flexible
enough to add the desired features without a significant reworking; the
ontology-driven model of constraints allows for straightforward extensions. 1230
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This is important because no system will immediately address all user wishes,
especially when they are allowed to express those wishes in NL.

The requests that were clearly beyond the scope of the work involved
tasks such as coordinating trips for multiple people so that they would arrive
at some mutually agreeable location, as in Example (20); and multisentence 1235
requests that seek information beyond the data model, as in Examples (21a)
and (21b):

20. Where can I go for dinner that is easy for Alice and Bob to meet me?
21a. Find a bus to the nearest hotel . . . how was it rated by previous guests?
21b. Which bus goes to the airport? . . . Is it air conditioned? 1240

The final use for the results obtained in this informal evaluation is that
we understand the scope of training and guidance needed for future users of
the system. Although the phrasing and formality of the language is flexible,
there are still transportation-centric requests that might be related to trip
planning but are beyond the understanding of the system as it stands. 1245

CONCLUSIONS AND FUTURE WORK

As shown in our discussion and evaluation, NL2TRANQUYL provides
robust handling of trip-planning queries expressed in natural language. The
low error rate demonstrated in the formal evaluation in conjunction with
the handling of poorly and partially formed input sentences provides a solid 1250
foundation for a real-world system. This is feasible because we begin by iden-
tifying the smallest identifiable semantic units in the input and build our
knowledge from there with the ontology providing guidance of what to look
for—we do not start with the assumption that the input is good or in any
singularly coherent format. 1255

There are a number of directions we are pursuing for further work on
this project. The first, and we believe most important, is continuing to work
with collaborators in the development of a fully functioning ITA for which
our NLI can provide an interface option. Among others, this would require
extensions to the ontology, both as concerns its content, and access and 1260
traversal, as we mentioned previously. Once the system is situated in a user-
accessible environment, we can further evaluate the efficacy of the NLI as it
exists now. Additionally, we would like to explore allowing a user to interact
with the system (e.g., clarifying ambiguities, providing information) because
it has been shown to improve accuracy (Rosé and Lavie 2000; Misu and 1265
Kawahara 2006). How this interaction would take place will depend on the
modality of the returned results. It perhaps will also be easier for users to pro-
vide their requests in multiple steps (i.e., sentences), which is currently not
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supported; as we discussed earlier, both our initial data collection and our
informal evaluation with Facebook yielded several examples of multisteps 1270
requests.

Even with the strong performance of the system, our informal evaluation
found some areas in which we can improve. One straightforward exten-
sion is to allow for more phrasings of temporal constraints, e.g., Find a
bus home that leaves in two hours. In our initial evaluation, we required that 1275
the time be stated explicitly, but this type of extension is straightforward
to include. Likewise, because we have identified the causes of some mis-
takes such as PP attachments for request set C, we can devise heuristics to
deal with these cases. Some of the identified language (e.g., knowledge of
signalized intersections, cleanliness) require extensions to the TRANQUYL 1280
data model. An intriguing challenge for future work is to adapt meth-
ods for supervised or unsupervised learning of additions to the ontology,
as inspired by work such as Thompson and Mooney (2003) and Muresan
(2008).

In conclusion, we have presented a robust natural language interface for 1285
trip planning in multimodal urban transportation networks—a previously
unstudied domain that presents a unique combination of spatial, temporal,
and path concepts that can be tied into a user-centric model that allows for
a variety of self-referential language.
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APPENDIX A. INSTRUCTIONS FOR ORIGINAL CORPUS

COLLECTION 1495

The email below was sent by the first author to the set of stu-
dents, colleagues, and friends described in section “Natural Language
Considerations”. Please note that all the recipients used to work and/or
live in Chicago and surrounds, and hence, all the references following were
familiar to them. 1500

One of the goals [of my work] is to provide a NLI for the ITA in order
to allow users to query the available information in a natural and intuitive
manner. One important question centers around the language or gram-
mar used by users—what types of questions are asked and how do they get
asked? It is for this task that I am asking for a small portion of your time to 1505
help.

I have described a number of potential situations in which the ITA
would be useful. For each of these I would appreciate it if you would give
three example questions that you would ask the ITA. For at least half of
them, please make them multipart questions. We are assuming that the 1510
types of information (context, road, traffic, congestion, point of interest)
exist. Please be yourself in these situations; use your own preferences, per-
sonality, and even willingness to spend. This is about what you would want to
know. Assume that the ITA returns a ranked set of results. The ITA should
know at least some basic things about you in terms of your user profile (e.g., 1515
has a car, willing to take a bus, etc.).
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Some examples:

You are stuck in traffic on 90/94 at 2:00 p.m. on a Saturday.

1. How much longer will it take me to get to the Fullerton exit?
a. How is the congestion two miles up the road? 1520
b. Is there a faster route?

2. Give me the fastest route to Fullerton and Western.

You are meeting a friend at Grant Park after class, and plan to see some
of the sites of the city.

1. How can I get to Grant Park from here for less than $8? 1525
a. Which is the fastest option?

2. How do I get from here to Grant Park? (assuming there is a default mode
of transportation)

Where is the closest taxi?
Will there be a ride share from the park to the Sear’s Tower around 1530

4:00 p.m.?
And on to the situations. Feel free to simply reply to and edit this email

to add your questions. The responses from all volunteers will be aggre-
gated and any reference to you will be removed. If you have any additional
questions, comments, or concerns please contact me. 1535

Situations:
You have just arrived at O’Hare Airport and need to find transportation

to your hotel downtown.
You are stuck in traffic near 35th St. on 90/94 at noon on a Saturday

while going to meet your friends for lunch. 1540
You and your date finished dinner in the near north side and are

looking for something else to do.
You are meeting a friend at Grant Park after class, and plan to see some

of the sites of the city.
You are on UIC’s campus and need to get to the Sears’ Tower as soon 1545

as possible for a meeting.
You stayed in the lab later than normal and your ride home left without

you.


