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Abstract— In this paper we describe our progress towards
understanding human communication through physical inter-
action. We describe a classification algorithm that can recognize
four classes of actions that frequently occur during collaborative
manipulation of planar objects. These actions were selected
based on a user study involving dyads of elderly and care-giver
in a realistic setting. Further user studies were conducted to
collect the data necessary to develop the classification algorithm.
As part of the data collection we also developed a sensory glove.
The classification algorithm gives insight into human collabo-
rative manipulation. More precisely, it identifies features in the
data that are significant for classification. This information is
particularly interesting as it only relies on physical aspects of
the interaction and not on any particular sensor. As a result, the
described work does not depend on any particular hardware
and can be directly used by other researchers in human-robot
interaction to develop further experiments and studies.

I. INTRODUCTION

Personal robot assistants hold great promise for addressing
pressing societal needs. One of the areas where they could
potentially have an enormous impact is to support the in-
dependent living of the elderly [1]–[3]. However, if a robot
is to help an elderly person with activities of daily living
(ADLs) [4], it needs to physically interact with the person.
But physical interaction, be it through a direct touch or via an
object, is also a form of communication that complements
language, vision and gestures. This work is motivated by
the need to investigate the communicative aspect of physical
interaction so that future robots may be endowed with such
a capability. While physical interaction between robots and
humans has been well studied (e.g. [5]–[7]), the focus has
been on interpreting the interaction at the control level rather
than explore its communicative aspects.

In this work, we advance the hypothesis that physical
interaction is an important communication modality that
complements language, vision and gestures. For example,
one can envision taking a hand of an elderly person with
impaired vision and place it on a fork so the person can grab
it, all without speaking a word. In [8], [9], we showed that
physical interaction significantly improves the understanding
of language.

Learning from humans is one of the prevailing paradigms
in the human-robot interaction community [10]–[12]. Con-
sistent with this view, in order to allow personal robots to
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communicate with humans through physical interaction, it
is necessary to understand how humans communicate with
each other in this way. This calls for human studies and data
collection efforts. Our paper describes a set of human studies
that were designed to establish a corpus of multimodal
interactions between a subject and a helper, placing special
emphasis on physical interaction. To start with, we conducted
a user study involving dyads of elderly and care-giver in a
realistic setting. The data from the study was used to identify
activities where physical interaction plays an important role
and focus additional data collection. Four classes of actions
that frequently occur during collaborative manipulation of
planar objects were chosen for further study. In turn, the bulk
of the data used in this paper was collected in a laboratory
setting, focusing on collaborative manipulation of planar
objects and using younger subjects. A unique challenge in
studying human physical interaction is the lack of devices
that can collect data and are unobtrusive. As part of our data
collection efforts we thus also developed a sensory glove for
observing human physical interaction.

Our main result are decision rules that successfully iden-
tify the four classes of manipulative actions from the data.
They were automatically learns using principal component
analysis and clustering. An important feature of the
decision rules is that they directly use physical aspects of
the interaction and are not dependent on any particular
hardware. The analysis thus provides a useful insight into
human collaborative manipulation of planar objects. More
importantly, it can be easily generalized to other devices and
used by other researchers to develop further studies.

More broadly, our research is an important step towards
developing personal robots that are engaged in both cognitive
as well as physical aspects of the daily activities of the
elderly. It is part of the RoboHelper project [13] whose
ultimate goal is to deploy robotic assistants for the elderly
so that they can safely remain living in their home.

II. RELATED WORK

In recent years, considerable effort has been devoted to
improving the assistive technology for the elderly [14]–[16].
While some of these robots use touch sensors, the sensors
have very limited function [17]–[19]. A number of studies
have explored various aspects of haptic collaboration [20]–
[26]. None of these works identifies mechanisms for commu-
nication through physical interaction in everyday activities.

A major obstacle in studying physical interaction is a
lack of suitable sensors. This may be attributed to both
the complicated nature of the sense of touch (tactile and



kinesthetic) and the fact that the existing tactile sensors are
limited. A variety of sensor designs have been proposed
based on different transducers and materials [27]–[31]. The
commercially available physical interaction sensing devices
range from very precise force and torque sensors [32], [33]
to flexible pressure sensors [34]–[36]. These give a rough
estimate of the pressure at the point of contact rather than a
precise measurement of force and torque. The big advantage
of these sensors is that they are inexpensive and are suitable
for use on sensory gloves. Among the data gloves currently
available on the market, a particularly attractive choice is the
Grip System [37]. It has been observed that the calibration of
the sensors on this glove is fairly inaccurate [38]. Another
option, Vista Medical Glove [39], is also not suitable for
our study as the conducting strips attached to the sensors
are too long and they might affect how the care-giver can
perform activities. Another disadvantage of these gloves is
that they only offer tactile sensing. Most notably, they lack
inertial navigation senors that could provide information
about the orientation of the hand. This information is useful
in distinguishing various grasp configurations.

III. NEWLY DEVELOPED SENSORY GLOVE

Given the lack of suitable devices on the market we
decided to develop our own sensory glove. Since no suitable
force/torque sensors are easily available, we used pressure
sensors to obtain interaction force information. Two design
requirements were identified for studying human physical
interaction: (a) the sensing device should be able to measure
direct or indirect (through an object) forces; and (b) it should
not interfere with the observed activity.

Satisfying (a) would require placing sensors all over the
surface of the arm. For example, in the user study described
in [13], the caregiver uses her arm to help the elderly subject.
Clearly, measuring all such interactions is impractical so we
restricted ourselves to the hands, as that is where the majority
of communication through physical interaction takes place.
To further simplify the data acquisition process we only
focused on the right hand. To satisfy (b) we used a wearable
glove with pressure sensors. This requirement also calls for
the necessary electronics to be lightweight and for the sensors
on the glove to be flexible and thin so that the sensation of the
subject and the movement of the hand are not significantly
affected.

We chose a plain cotton glove, since it is comfortable to
wear. To measure physical interaction data we attached Flex-
iForce pressure sensors [40] (Tekscan, USA) to the glove.
These sensors are thin and light, and favorably compare to
other similar sensors in terms of precision and linearity [34],
[35]. To minimize the interference of the sensors with the
normal use of the hand we put the pressure sensitive part
on the front side of the hand, wrapping the sensor to the
backside of the hand where all the wires are attached. The
sensors are stitched to the glove to hold them firmly in place.

The sensors were placed on every segment of each finger
except for the middle segments of the thumb and the pinkie
(these segments are too small). We also placed four of the

pressure sensors on the palm. In total, 17 pressure sensors
were attached to the glove (Figure 1). In addition to the
pressure sensors, a 6 degree of freedom inertial measurement
unit (ITG3200/ADXL345, SparkFun Electronics, USA [41])
was used to capture hand tilt and acceleration. It was
attached to the back of the hand. The glove is connected
to a processor box based on Arduino Mega microcontroller
board [42] through two 20 wire cables. All the electronics
is placed in a small backpack that the subject wears during
the experiments.

Fig. 1: A sensory glove developed at UIC Robotics Lab

The microcontroller time stamps the data and transmits it
wirelessly to a computer using an Xbee module. The data is
sampled at around 70Hz.

The sensors cover most of the hand and do not hinder
the bending of fingers. However, the pressure sensors are
sensitive to pressure from both sides so pressure is recorded
when fingers are bent. Further, the sensitivity of the pres-
sure sensors varies among the sensors. We thus calibrated
each sensor based on the maximum and minimum reading
obtained during the experiments.

We should also mention that it is difficult to compare the
performance of the developed glove to that of the commercial
gloves due to a lack of evaluation studies. However, in
Section VI-C we present a classification algorithm that
was derived using the developed glove, but that does not
depend on the particular hardware. This demonstrates that
the developed glove is well suited for the intended use and
further underscores the contribution of our work.

IV. USER STUDY

In order to better understand different communication
modalities and types of interactions between the elderly and
their caregivers, we conducted a user study as a part of the
RoboHelper project [13]. The user study was performed in a
fully functional studio apartment in the College of Nursing
at Rush University. Our experiments focused mainly on the
activities of the daily living (ADLs) that are crucial for the
independent living of the elderly: (a) getting up from the
bed/chair; (b) ambulating in the apartment; (c) cooking a
meal; and (d) setting a table for a meal and subsequently
cleaning up. During the experiments, video streams from 8



cameras were recorded to provide complementary views of
the room and the subjects. The subjects also wore wireless
microphones to record the audio. We collected 19 interac-
tions, where each different elderly subject interacted with
one of two helpers.

Fig. 2: Data collection in a mock apartment.

To obtain the information on physical interaction, the
helpers wore the data glove equipped with pressure sensors
described in Section III on their right hand. While the
data glove only provides limited information on the forces
during the physical interaction, it only minimally interferes
with the normal interaction between subjects. None of the
subjects ever complained that they could not perform an ADL
properly because they wore the data glove.

The experiments confirmed our hypothesis that physical
interaction plays an important role in the communication
of the elderly with the caregiver as reported in [13]. The
activities that require physical interaction can be divided
into the following broad categories: (a) handing-over objects;
(b) manipulating an object together; and (c) supporting the
elderly in walking or getting up.

It was also observed that both handing-over objects and
manipulating objects together often involved planar objects,
e.g. handing over plates or a tray while setting and cleaning
the table. This was the case for 15 subjects out of 19 subject.
We thus decided to further investigate collaborative manipu-
lation of planar objects. Our preliminary data suggests that
collaborative manipulation of planar objects mainly consists
of the following actions:

1) Holding an object alone with one hand (OH).
2) Holding an object alone with both hands (BH).
3) Holding an object with another person (AP).
4) Empty hand—not holding anything (EH).
In order to advance our understanding of multimodal

communication it is necessary to establish an annotated
corpus of such interactions. For example, it has been shown
that knowing the type of physical interaction helps in under-
standing spoken language [8], [9]. Since manual annotation
is time consuming and does not scale, it is thus necessary to
develop appropriate classification algorithms that can be used
to automatically annotate the data. In turn, if implemented

on a robot, the classification algorithms can be used during
the interaction to guide robot actions.

V. DATA COLLECTION IN A LABORATORY SETTING

Since our preliminary data collection was largely un-
scripted and took place in an unstructured setting, we de-
cided to collect additional data in a laboratory setting. The
experiments consisted of one person wearing the data glove
and performing different instances of the planar manipulation
task in collaboration with another person in whatever order
they preferred. The object that was manipulated was a dinner
plate. For example, the subject wearing the glove held the
plate alone for some time with the gloved hand, then for
some time held it with the collaborating subject, and so on.
We performed each of the four actions mentioned earlier in a
completely random order. Since these actions were random,
certain actions were performed for a longer duration than
others, and some actions were repeated more than others,
but each action was repeated at least ten times. To filter
out the noise, the recorded data was filtered using a moving
average smoothing filter. The filtered data is subsequently
down-sampled to 20Hz. For each action, each sample is
considered a separate data point. For example, if an instance
of a particular action lasts for 3 seconds, we have 20×3 = 60
data points for that instance. In our classification experiments
we classify each of these data points individually.

Read Data

from a File

Classify

Data

Analyze

Results

Filter and

Downsample

Fig. 3: Steps in processing of the collected data.

The experimental data was collected from 4 subjects in
total. Experiments were videotaped. The video was then
synchronized with the glove data via the latter’s time stamps.
Each sample was annotated for actions listed above based
on the video. These annotations were used for verification
of predicted results. Figure 3 describes the steps involved in
the data processing.

VI. CLASSIFICATION OF DATA

Several classification algorithms were compared. The
primary measures used for comparison were precision (the
portion of instances that were assigned to a particular class
that were correctly classified) and recall (the portion of all
instances belonging to a class which were assigned to that
class) [43]. The abbreviations used in the tables are those
listed in Section IV.

A. Supervised Classification

We first classified the data using k-Nearest Neighbor (k-
NN [44]) and Linear Discriminant Analysis (LDA) [45], two
examples of supervised classification algorithms. Supervised
classification algorithms require training data, where classes
for each sample have been labeled, to classify the testing
data. In our experiment, we used the data from 3 subjects
as training data and the data from the remaining subject
as testing data. This was repeated for each of the four



subjects. The data was classified into the four classes listed
in Section IV (OH, BH, AP, EH). The average F-score (the
harmonic mean of precision and recall) were 52.15% and
56.93% for LDA and k-NN, respectively.

B. Unsupervised Classification

We next explored clustering, a representative of unsuper-
vised classification algorithms. Clusters are formed so that
the objects in the same cluster are more closely related
to each other than to those in other clusters [44]. When
we applied clustering directly to the 17 dimensional data
comprised of pressure sensor readings the results were not
good. We thus reduced the dimensionality of the data by
applying principal component analysis (PCA) [46].

The results of PCA show that more than 50% of the
total information is concentrated in the first two principal
components [45]. Figure 4 shows the data of subject 3
projected to two leading principal components and indicates
that the data is clustered.
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Fig. 4: Data plot of two leading principal components for
subject 3

We chose the k-means clustering algorithm [44] and
applied it to the data represented by the first two principal
components. To select the number of clusters we used mean
silhouette value [47] which determines how well the data
points have been clustered. We applied clustering to the data
of subject 3. In this case, the mean silhouette value was
highest for 12 clusters. The results are given in Table I.

TABLE I: Data Composition of 12 Clusters for Subject 3

1 2 3 4 5 6 7 8 9 10 11 12
AP 2 571 68 142 289 234 29 241 0 429 2 526
OH 2 279 0 650 981 145 84 18 0 517 699 197
EH 0 21 231 0 0 4 808 330 1459 0 0 0
BH 458 83 1 12 1 1094 573 130 1 31 0 445

Note that the clusters 1-6, 9 and 11 contain data samples
predominantly from a single action whereas the clusters 7,
8, 10 and 12 confuse two or more actions. Recall that the
numbers in Table I represent individual data samples; the

numbers are high since there are 20 samples for each second
of the experiment.

Table II gives the precision and recall for the well sepa-
rated clusters for Subject 3 and also the average for all the
subjects. Recall is low, as we have not considered clusters
that are shared by two or more actions.

TABLE II: Clustering Results for Subject 3 and Average
Across All Subjects

Subject 3 All Subjects
Precision Recall Precision Recall

AP 80.0% 54.9% 77.0% 54.2%
OH 59.9% 32.2% 76.7% 48.3%
EH 83.9% 65.2% 90.0% 81.8%
BH 96.0% 59.2% 76.1% 60.3%

C. Clustering Based Decision Tree (CBDT)

Clustering using PCA gives satisfactory results across
subjects, but it unfortunately provides little insight into the
physical features that characterize different classes. Even
more troublesome, the results are hardware-specific and can
not be generalized to a different data-collection device.

To obtain a more meaningful interpretation of the clusters,
we thus mapped the first principal component to the sensors
that define it. Namely, we identified the sensors that are
given more weight in the leading principal component. This
component carries 30%-60% of total information for the data
in the 4 experiments. We determined that the highest weight
in the leading principal component is given to fingertip
sensors, excluding the index finger, for all the subjects. By in-
terpreting the weights that define well separated clusters, we
subsequently built a decision tree shown in Figure 5. Please
refer to Table III for explanation of different pressure levels.
Note that the analog inputs on the Arduino microcontroller
are sampled using 10-bit A/D converters which implies that
the maximum sensor reading is 1023.

TABLE III: Pressure Level Definitions

Very
High High Moderate Low

Sum of pinkie,
ring and middle
finger top

greater
than
2100

greater
than
1800

less than 1800
and greater
than 700

less than
700

Very High High Very Low
Pinkie Top NA NA less than 150
Ring Top greater than 900 NA less than 300

Middle Top greater than 900 greater than 700 less than 300
Thumb Top greater than 750 NA less than 300

The physical interpretation of these rules is apparent. For
example, a point will be classified as empty hand either if
the pressure on the fingertips is very low (the fingertips are
not touching anything), or if the pressure is low but the palm
is bent. The latter can be determined by checking the palm
middle sensor. When the hand is empty it is often slightly
closed, causing the palm middle sensor to bend, and in turn
producing high pressure on that sensor.

Similarly, if there is some pressure on the tips of the three
middle fingers, but on one of these fingers the pressure is
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Fig. 5: Clustering Based Decision Tree

very low, the sample likely corresponds to empty hand if the
palm is bent, and to holding a planar object (a plate) alone
with both hands otherwise. In the latter case, when a person
is holding a planar object such as a plate with both hands,
one often relaxes the pressure on one or two of the fingers
as one knows that the other hand is also holding the plate.
The sensor readings that correspond to the other two classes
can be similarly explained.

For the CBDT, Table IV provides performance and the
confusion matrix. In the confusion matrix, each column
represents the number of samples that were classified in
the class described by the column label, while each row
indicates how samples in the class described by the row
label were classified. The average F-score (the harmonic
mean of precision and recall) for the classification with
the CBDT is 69.94%. We thus conclude that the CBDT
successfully distinguishes different actions during human
collaborative manipulation. It is especially interesting that
using the pressure data it is possible to distinguish whether
an object is held with two hands by a single person, or by
two different people.

TABLE IV: Recognition Results for CBDT

Recognition Rates Confusion Matrix
Precision Recall Fscore AP OH EH BH

AP 57.2% 68.0% 62.2% 11064 3158 627 1419
OH 71.9% 54.2% 61.8% 6599 9530 231 1225
EH 88.5% 88.9% 88.7% 163 64 15219 1665
BH 63.7% 70.8% 67.1% 1502 512 1115 7576

The results of the CBDT across all subjects compare
favorably with the results of k-NN for a single subject.
This implies that the inferred physical interpretation of the
data and the derived decision tree captures the information
remarkably well.

VII. CONCLUSIONS

This paper investigates how humans communicate through
physical interaction. The work is motivated by the need to
understand human behavior before a similar functionality
can be replicated on robots. The task that was studied in
detail was collaborative manipulation of a planar object. We
describe a sensory glove that was developed to unobtrusively
capture features of the interaction forces during collaborative
manipulation. We also describe a set of experiments with
human subjects that show that physical interaction does in
fact represent a form of communication. The ensuing data
analysis allowed us to derive a decision tree that uses the
rules which only depend on direct physical interpretation of
the data (fingertip pressure). Different actions which seem
alike looking at the forces required for manipulation of the
object (holding with two hands by a single person rather than
holding by two people) can be successfully recognized as
distinct events using the derived decision tree. Since the rules
in the decision tree only use relative pressure to distinguish
between different actions, they can be easily adapted for
different sensors and hardware platforms. In fact, one would
expect that the recognition rates would only improve if better
sensing hardware is used.

The findings in the paper can be directly used to improve
the ability of the robots to physically interact with humans.
For example, the classes that were identified in this work
can be used by the robot to determine how to act during a
hand-over task with a human. Implementation on a robotic
platform is part of our future work.

While the actions studied in this paper all involved power
planar grasp we believe that the derived decision tree could
be generalized to actions that require other types of grasps
due to the direct physical interpretation of the decision rules.
Showing that this is indeed the case is another promising
extension of this work.
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