ChiQat-Tutor: An Integrated Environment for
Learning Recursion

Omar AlZoubi', Davide Fossati', Barbara Di Eugenio?, and Nick Green?

1 Computer Science, Carnegie Mellon University
{oalzoubi,dfossati}@cmu.edu
2 Computer Science, University of Illinois at Chicago
{bdieugen,ngreen21}@uic.edu

Abstract. Novice Computer Science (CS) students struggle learning
recursion for reasons such as unfamiliarity with recursive thinking and
difficulty in visualizing program execution. Many tasks in CS require a
thorough understanding of recursion. We introduce the recursion module
of ChiQat-Tutor, an environment for learning CS algorithms and data
structures. ChiQat-Tutor uses the pedagogical tool of Recursion Graphs
to help students visualize, manipulate, and learn recursive processes.

Keywords: Recursion, Recursion graphs, Intelligent tutoring

1 Introduction

Recursion is a fundamental and broad concept in computer science: it is a theo-
retical construct, a programming technique, a way of expressing algorithms, and
a problem-solving approach [1]. Many problems in CS data structures, artificial
intelligence, and algorithm analysis require a thorough understanding of recur-
sion. Unfortunately, many students and novice programmers struggle learning
it [2]. Computer science educators argue that recursion is an inherently diffi-
cult concept to master, and it is one of the most difficult to teach [3]. Turbak
et al. [4] state that recursion is difficult because it is traditionally taught after
students built up preconceptions based on their experience with loops. Tessler
et al. [5] note that students have difficulty recognizing different invocations of
the same function, and they get confused by the bookkeeping required for each
recursive call. They particularly struggle because of unfamiliarity with recursive
activities; visualization of program execution; back-flow of execution after reach-
ing the base case; comparison to loop structures; and lack of everyday analogies
for recursion. To understand the process of recursion and write recursive code
one should be able to visualize the nature of a problem and how solutions to
smaller similar problems are combined to solve the original one [6]. Turbak et
al. [4] describe recursion as an instance of the problem solving strategy “divide,
conquer, and glue (DCG)”. In this strategy a problem is divided into simpler
sub-problems, then solved (conquered) by yielding sub-solutions, and finally glu-
ing these sub-solutions together into one. Recursion is an instance of DCG in

71

2 ChiQat: Environment for Learning Recursion

which sub-problems are of the same kind as the original problem. Therefore, the
function to solve these sub-problems is the same being defined to solve the whole
problem. Such notion of function calling itself is confusing for many students.

We now present the recursion module of our new ChiQat-Tutor intelligent
tutoring system. ChiQat-Tutor offers an environment for learning core CS topics
such as linked lists, trees, and recursion. The system builds on iList [7] which
was shown to significantly help students learn linked lists. ChiQat-Tutor will
substantially expand the iList curriculum and add novel pedagogical strategies
in CS education, including worked-out examples [8].

2 Approaches to Teaching Recursion

There are many approaches to teaching recursion. Tessler et al. [5] suggests con-
ceptual models of recursion and control flow, and the use of visual aids. Concep-
tual models include mathematical induction, process tracing, stack simulation,
and structure templates of recursive code [9]. Dann et al. [2] advocate program
visualizations to introduce recursion, using their interactive programming envi-
ronment Alice. Students control the appearance and behavior of 3D objects by
writing simple scripts that allow them to gain insights into recursive procedures.
For the same purpose, Tessler et al. [5] used the Cargo-Bot video game. In this
game players control virtual robots by creating programs using a simple visual
language. It is notable that Cargo-Bot supports recursion but not looping. Ac-
cording to the authors, results from a controlled experiment showed significant
improvements in students’ understanding of recursion.

Algorithm animation is yet another approach to teaching recursion. Instruc-
tors program animations of commonly used algorithms. Students run the ani-
mations and observe their behavior with different inputs. Bower et al. [6] argue
that students should be able to manipulate the animations, not just watch them,
in order to learn. In ChiQat-Tutor we make use of Recursion Graphs (RGraphs)
which are a clever visual representation of recursive execution [10]. They are
directed graphs with two sets of vertices (oval for a recursion call, and square
for pre/post processing statements of recursive calls). An RGraph is built layer
by layer from top to bottom with directed edges indicating the execution se-
quence. We extended the use of RGraph in our system by implementing several
interactive tasks. Students will be able to interact with RGraph representation
of different recursive problems to help them understand recursive processes.

3 ChiQat-Tutor: Recursion Module

ChiQat-Tutor is a modular tutoring system whose goal is to facilitate learning of
core CS data structures (e.g., linked lists, trees, stacks) and algorithmic strategies
(e.g., recursion). In this section we focus on the new recursion module of ChiQat-
Tutor. The recursion module provides learners with an interactive environment
where they can perform a number of tasks using Recursion Graphs. Figure 1
shows its interface. Given a recursive problem (such as factorial or palindrome),

72

ChiQat: Environment for Learning Recursion 3

the recursion module of ChiQat supports five individual tasks: (1) tracing an
RGraph; (2) validating an RGraph; (3) constructing an RGraph; (4) animating
an RGraph and (5) answering multiple choice reflective questions. These tasks

differ in their difficulty, and learners are recommended to carry them in order.

Problem Description:
problem 1 -

A power of two of an integer can be
written in the form of 2*n, e.g. 275 =
32

In order to solve this problem using
recursive function calls, a problem must
be broke down into its base and
recursive cases. Hint: 245 = 2 * 244;
244225243 and 200 = 1.

In order to guide you to understand
how to solve this problem recursively
please answer the below questions.

The right side shows a skeleton of the
the function powerOfTwo(N).

The graph in the middle shows a
"recursion graph” where function calls
and the intermediate results of that
calls.

1- What is the Base case for the recursive
problem shown above 7

Please choose mode: (@) Trace | Validate

Trace Stop Tracing

Construct () Animation

Test Case 2

Start

e

€D Help Instructions

Sample Solution:

#Caleulates 24N, using recursion

Legend

Eunction Gall

Result

active Function Call

PowerOfTwo (3) IR E{ 74-8
Ve
TR

F
w

e)
A

F TR
w

B -
A

Terminated Function Call 0D

Returned Result

]

n:an integer number >= 0

Returns: an integer number

def powerOfTwoln):

if (n==0):

return 1

elser

retum 2* powerOfTwo(n-1)

n==1
F TR
n==2 X T~
- - e -

System Feedback:

Problem 1 is loaded

Fig. 1. Interface. Left: a problem, its explanation, and questions. Center: task list and
recursion graph. Right: help button and recursive code. Bottom: system’s feedback.

Tracing. Users click on the nodes of the RGraph and follow the right order
of execution. The nodes’ color will change as users make progress.

Validating. Students work on two types of RGraph: an incomplete RGraph,
and an RGraph that contains errors. Given a sample code, students are required
to fill the partial RGraph, then validate their solution. Similarly, they are re-
quired to correct the errors in the flawed RGraph, then validate their solution.

Constructing. Learners build an RGraph for a given recursive code. The
first few nodes of the RGraph are provided to them. Students need to validate
their solution after finishing constructing the RGraph.

Animating. Learners play a prepared animation and observe the execution
order of the recursive code. The nodes’ color change as the animation progresses.
Green indicates an active function call; gray indicates a terminated call or an
intermediate result, which is explained in a legend next to the RGraph.

Answering questions. Students answer multiple choice questions related
to the current recursive problem. This task is designed to test learners’ under-
standing of the recursive problem and recursion in general.

These tasks are inspired from the different teaching approaches to recursion
we discussed earlier. Our system is based on the visual model of RGraphs. It

73

4 ChiQat: Environment for Learning Recursion

also uses ideas from conceptual models of teaching recursion in the form of code
templates and multiple choice reflective questions. The RGraph-based interactive
tasks can help students identify the recursive structure of problems, and identify
the critical features of recursive solutions to these problems.

4 Conclusions and Current Work

We discussed the importance and difficulty of teaching recursion to novice CS
students. We also discussed different approaches to teaching recursion, with a
focus on conceptual and visual tools. We then introduced ChiQat-Tutor, a novel
environment for learning recursion. We are currently using the first version of
the recursion module in an introductory programming course at Carnegie Mellon
University enrolling approximately 60 students. Future work will be driven by the
results of this first trial. We anticipate adding structured templates for writing
code, intelligent feedback, and student modeling.

Acknowledgments. This work is supported by award NPRP 5-939-1-155 from
the Qatar National Research Fund.

References

1. McCracken, D.D.: Ruminations on computer science curricula. Communications
of the ACM 30(1) (1987) 3-5

2. Dann, W., Cooper, S., Pausch, R.: Using visualization to teach novices recursion.
In: 6th Conference on Innovation and Technology in Computer Science Education.
ITiCSE ’01, New York, NY, USA, ACM (2001) 109-112

3. Gal-Ezer, J., Harel, D.: What (else) should cs educators know? Communications
of the ACM 41(9) (1998) 77-84

4. Turbak, F., Royden, C., Stephan, J., Herbst, J.: Teaching recursion before loops
in ¢sl. Journal of Computing in Small Colleges 14(4) (1999) 86-101

5. Tessler, J., Beth, B., Lin, C.: Using cargo-bot to provide contextualized learning
of recursion. In: Proceedings of the ninth annual international ACM conference on
International computing education research, ACM (2013) 161-168

6. Bower, R.W.: An investigation of a manipulative simulation in the learning of
recursive programming (1998)

7. Fossati, D., Di Eugenio, B., Ohlsson, S., Brown, C., Chen, L.: Data driven au-
tomatic feedback generation in the iList intelligent tutoring system. Technology,
Instruction, Cognition, and Learning (TICL), Special Issue on Role of Data in
Instructional Processes (2014) In press.

8. Di Eugenio, B., Chen, L., Green, N., Fossati, D., AlZoubi, O.: Worked out examples
in computer science tutoring. In: AIED 2013, 16th International Conference on
Artificial Intelligence in Education, Memphis, TN (July 2013) Short paper.

9. Wu, C.C., Dale, N.B., Bethel, L.J.: Conceptual models and cognitive learning
styles in teaching recursion. SIGCSE Bull. 30(1) (March 1998) 292-296

10. Hsin, W.J.: Teaching recursion using recursion graphs. Journal of Computing
Sciences in Colleges 23(4) (2008) 217-222

74

